Exemple #1
0
def prepro(ds,
           fold,
           num_tokens_per_group,
           num_paragraphs,
           pad=True,
           n_samples=None):
    fold_funcs = {
        'train': lambda: ds.get_train(),
        'dev': lambda: ds.get_dev(),
        'test': lambda: ds.get_test()
    }
    qs = fold_funcs[fold]()
    if n_samples is not None:
        qs = qs[:n_samples]
    evidence = ds.evidence

    prep = None
    extract = ExtractMultiParagraphsPerQuestion(
        MergeParagraphs(num_tokens_per_group),
        ShallowOpenWebRanker(num_paragraphs),
        prep,
        intern=True)

    answers = {}
    batches = {}
    for q in tqdm(qs, ncols=80, desc='preprocessing'):
        pre = extract.preprocess([q], evidence)
        if len(pre.data) == 0:
            continue
        assert len(pre.data) < 2
        assert q.question_id not in answers
        assert q.question_id not in batches
        mpq = pre.data[0]
        pq_batch = [
            ParagraphAndQuestion(p.get_context(), q.question, None,
                                 q.question_id, p.doc_id)
            for p in mpq.paragraphs
            # document paragraph question?
        ]
        if pad:
            for i in range(num_paragraphs - len(pq_batch)):
                pq_batch.append(
                    ParagraphAndQuestion([], q.question, None, q.question_id,
                                         None))

        answers[q.question_id] = mpq.answer_text
        batches[q.question_id] = pq_batch

    voc = {w for bs in batches.values() for b in bs for w in b.question}
    voc.update({w for bs in batches.values() for b in bs for w in b.context})
    return answers, batches, voc
Exemple #2
0
    def _get_span_scores(self, question: List[str],
                         paragraphs: List[ParagraphWithInverse]):
        """
        Answer a question using the given paragraphs, returns both the span scores and the
        pre-processed paragraphs the span are valid for
        """
        if self.model.preprocessor is not None:
            prepped = []
            for para in paragraphs:
                if hasattr(para, "spans"):
                    spans = para.spans
                else:
                    spans = None

                text, _, inv = self.model.preprocessor.encode_paragraph(
                    [], para.text, para.start == 0,
                    np.zeros((0, 2), dtype=np.int32), spans)
                prepped.append(
                    WebParagraph([text], para.original_text, inv,
                                 para.paragraph_num, para.start, para.end,
                                 para.source_name, para.source_url))
            paragraphs = prepped

        qa_pairs = [
            ParagraphAndQuestion(c.get_context(), question, None, "")
            for c in paragraphs
        ]
        encoded = self.model.encode(qa_pairs, False)
        return self.sess.run(self.span_scores, encoded), paragraphs
 def get_document_embedding(self, text):
     document_tokens, _ = self.tokenize(text)
     test_question = ParagraphAndQuestion(document_tokens,
                                          ['dummy', 'question'], None,
                                          "cape_question", 'cape_document')
     feed = self.model.encode([test_question], False, cached_doc=None)
     return self.sess.run(self.model.context_rep, feed_dict=feed)[0]
Exemple #4
0
def read_input_data(model):
  data = []
  vocab = set()
  tokenizer = NltkAndPunctTokenizer()
  splitter = Truncate(400)  # NOTE: we truncate past 400 tokens
  selector = TopTfIdf(NltkPlusStopWords(True), n_to_select=5)
  with open(OPTS.input_file) as f:
    for i, line in enumerate(f):
      try:
        document_raw, question_raw = line.strip().split('\t')
      except ValueError as e:
        print(line.strip())
        print('Error at line %d' % i)
        raise e
      document = re.split("\s*\n\s*", document_raw)
      question = tokenizer.tokenize_paragraph_flat(question_raw)
      doc_toks = [tokenizer.tokenize_paragraph(p) for p in document]
      split_doc = splitter.split(doc_toks)
      context = selector.prune(question, split_doc)
      if model.preprocessor is not None:
        context = [model.preprocessor.encode_text(question, x) for x in context]
      else:
        context = [flatten_iterable(x.text) for x in context]
      vocab.update(question)
      for txt in context:
        vocab.update(txt)
      ex = [ParagraphAndQuestion(x, question, None, "user-question%d"%i)
            for i, x in enumerate(context)]
      data.append((document_raw, question_raw, context, ex))
  return data, vocab
 def build_dataset(self, data: FilteredData, corpus) -> Dataset:
     flattened = []
     for point in data.data:
         for para in point.paragraphs:
             flattened.append(ParagraphAndQuestion(para.text, point.question,
                                         TokenSpans(point.answer_text, para.answer_spans),
                                         point.question_id))
     return ParagraphAndQuestionDataset(flattened, self.batcher)
 def build_qa_pair(self, question, question_id, answer_text, group=None) -> ContextAndQuestion:
     if answer_text is None:
         ans = None
     elif group is None:
         ans = TokenSpans(answer_text, self.answer_spans)
     else:
         ans = TokenSpanGroup(answer_text, self.answer_spans, group)
     return ParagraphAndQuestion(self.text, question, ans, question_id)
 def _get_span_scores(self, question: List[str],
                      paragraphs: List[WebParagraph]):
     paragraphs = self._preprocess(paragraphs)
     qa_pairs = [
         ParagraphAndQuestion(c.get_context(), question, None, "")
         for c in paragraphs
     ]
     encoded = self.model.encode(qa_pairs, False)
     return self.sess.run(self.span_scores, encoded), paragraphs
 def get_logits(self, question, document_embedding):
     question_tokens, _ = self.tokenize(question)
     n_words = document_embedding.shape[0]
     dummy_document = ['dummy'] * n_words
     test_question = ParagraphAndQuestion(dummy_document, question_tokens,
                                          None, "cape_question",
                                          'cape_document')
     feed = self.model.encode(
         [test_question],
         False,
         cached_doc=document_embedding[np.newaxis, :, :])
     start_logits, end_logits = self.sess.run(
         [self.start_logits, self.end_logits], feed_dict=feed)
     return start_logits[0][:n_words], end_logits[0][:n_words]
Exemple #9
0
def get_answers_faster(sess,
                       model,
                       pred,
                       batches,
                       answers,
                       topk,
                       batch_size,
                       verbose=False):

    mr_answers = {}
    batch_acc = []
    location_acc = []
    logits_dict = {}

    def _run_batch(batch_acc, location_acc):
        feed = model.encode(batch_acc, False)
        yp, yp2 = sess.run([pred.start_logits, pred.end_logits],
                           feed_dict=feed)
        qqids, js = zip(*location_acc)
        for (qqid, j, stl, enl) in zip(qqids, js, yp[:len(location_acc)],
                                       yp2[:len(location_acc)]):
            logits_dict[(qqid, j)] = (stl, enl)

    for qid, batch in tqdm(batches.items()):
        for i, b in enumerate(batch):
            batch_acc.append(b)
            location_acc.append((qid, i))
            if len(batch_acc) == batch_size:
                _run_batch(batch_acc, location_acc)
                batch_acc, location_acc = [], []

    if len(batch_acc) != 0:
        bs = len(batch_acc)
        for _ in range(batch_size - bs):
            batch_acc.append(ParagraphAndQuestion([], [], None, None, None))
        _run_batch(batch_acc, location_acc)

    qids = batches.keys() if verbose else tqdm(
        batches.keys(), ncols=80, desc='Extracting answers')
    for qid in qids:
        batch = batches[qid]
        yp = [logits_dict[qid, j][0] for j in range(len(batch))]
        yp2 = [logits_dict[qid, j][1] for j in range(len(batch))]
        mr_answers[qid] = _decode_answers(qid, batch, yp, yp2, answers, topk,
                                          verbose)
    return mr_answers
def find_answer(documents, raw_question):

    raw_question = raw_question.lower()
    documents = [d.lower() for d in documents]

    global best_spans, conf

    documents = [re.split("\s*\n\s*", doc) for doc in documents]
    tokenizer = NltkAndPunctTokenizer()

    question = tokenizer.tokenize_paragraph_flat(raw_question)

    documents = [[tokenizer.tokenize_paragraph(p) for p in doc]
                 for doc in documents]

    splitter = MergeParagraphs(400)

    documents = [splitter.split(doc) for doc in documents]

    if len(documents) == 1:
        selector = TopTfIdf(NltkPlusStopWords(True), n_to_select=5)
        context = selector.prune(question, documents[0])
    else:
        selector = ShallowOpenWebRanker(n_to_select=10)
        context = selector.prune(question, flatten_iterable(documents))

    context = [flatten_iterable(x.text) for x in context]

    data = [
        ParagraphAndQuestion(x, question, None, "user-question%d" % i)
        for i, x in enumerate(context)
    ]

    encoded = model.encode(data, is_train=False)

    with sess.as_default():
        spans, confid = sess.run([best_spans, conf], feed_dict=encoded)

    best_para = np.argmax(confid)
    ans = " ".join(context[best_para][spans[best_para][0]:spans[best_para][1] +
                                      1])
    confidence = confid[best_para]

    return ans, confidence
Exemple #11
0
def read_input_data(model):
  data = []
  vocab = set()
  tokenizer = NltkAndPunctTokenizer()
  with open(OPTS.input_file) as f:
    json_data = json.load(f)
  for doc in json_data['data']:
    for paragraph in doc['paragraphs']:
      context = tokenizer.tokenize_with_inverse(paragraph['context'])
      if model.preprocessor is not None:
        context = model.preprocessor.encode_text(question, context)
      context = context.get_context()
      vocab.update(context)
      for qa in paragraph['qas']:
        question = tokenizer.tokenize_sentence(qa['question'])
        vocab.update(question)
        ex = [ParagraphAndQuestion(context, question, None, qa['id'])]
        data.append((paragraph['context'], context, ex))
  return data, sorted(list(vocab))
    async def answer_question_spans(
            self, question: str
    ) -> Tuple[np.ndarray, np.ndarray, List[WebParagraph]]:
        """
        Answer a question using web search, return the top spans and confidence scores for each paragraph
        """

        paragraphs = await self.get_question_context(question)
        question = self.tokenizer.tokenize_paragraph_flat(question)
        paragraphs = self._preprocess(paragraphs)
        t0 = time.perf_counter()
        qa_pairs = [
            ParagraphAndQuestion(c.get_context(), question, None, "")
            for c in paragraphs
        ]
        encoded = self.model.encode(qa_pairs, False)
        spans, scores = self.sess.run([self.span, self.score], encoded)
        self.log.info("Computing answer spans took %.5f seconds" %
                      (time.perf_counter() - t0))
        return spans, scores, paragraphs
Exemple #13
0
    def _build_expanded_batches(self, questions):
        out = []
        for i, q in enumerate(questions):
            order = self._order[i]
            out.append(ParagraphSelection(q, order[self._on[i]]))
            self._on[i] += 1
            if self._on[i] == len(order):
                self._on[i] = 0
                np.random.shuffle(order)

        out.sort(key=lambda x: x.n_context_words)

        group = 0
        for selection_batch in self.batcher.get_epoch(out):
            batch = []
            for selected in selection_batch:
                q = selected.question
                if self.merge:
                    paras = [q.paragraphs[i] for i in selected.selection]
                    # Sort paragraph my reading order, not rank order
                    paras.sort(key=lambda x: x.get_order())
                    answer_spans = []
                    text = []
                    for para in paras:
                        answer_spans.append(len(text) + para.answer_spans)
                        text += para.text
                    batch.append(
                        ParagraphAndQuestion(
                            text, q.question,
                            TokenSpans(q.answer_text,
                                       np.concatenate(answer_spans)),
                            q.question_id))
                else:
                    for i in selected.selection:
                        para = q.paragraphs[i]
                        batch.append(
                            para.build_qa_pair(q.question, q.question_id,
                                               q.answer_text, group))
                    group += 1
            yield batch
 def post_query():
     document_raw = bottle.request.forms.getunicode('document').strip()
     question_raw = bottle.request.forms.getunicode('question').strip()
     document = re.split("\s*\n\s*", document_raw)
     question = tokenizer.tokenize_paragraph_flat(question_raw)
     doc_toks = [tokenizer.tokenize_paragraph(p) for p in document]
     split_doc = splitter.split(doc_toks)
     context = selector.prune(question, split_doc)
     if model.preprocessor is not None:
         context = [
             model.preprocessor.encode_text(question, x) for x in context
         ]
     else:
         context = [flatten_iterable(x.text) for x in context]
     vocab = set(question)
     for txt in context:
         vocab.update(txt)
     data = [
         ParagraphAndQuestion(x, question, None, "user-question%d" % i)
         for i, x in enumerate(context)
     ]
     model.word_embed.update(loader, vocab)
     encoded = model.encode(data, is_train=False)
     start_logits, end_logits, none_logit = sess.run(
         [start_logits_tf, end_logits_tf, none_logit_tf], feed_dict=encoded)
     beam, p_na = logits_to_probs(document_raw,
                                  context[0],
                                  start_logits,
                                  end_logits,
                                  none_logit,
                                  beam_size=BEAM_SIZE)
     return bottle.template('results',
                            document=document_raw,
                            question=question_raw,
                            beam=beam,
                            p_na=p_na)
    def getAnswer(self):
        #parser = argparse.ArgumentParser(description="Run an ELMo model on user input")
        #parser.add_argument("model", help="Model directory")
        #parser.add_argument("question", help="Question to answer")
        #parser.add_argument("documents", help="List of text documents to answer the question with", nargs='+')
        #args = parser.parse_args()

        #print("Preprocessing...")

        # Load the model
        model_dir = ModelDir(MODEL_DIR)
        model = model_dir.get_model()
        if not isinstance(model, ParagraphQuestionModel):
            raise ValueError(
                "This script is built to work for ParagraphQuestionModel models only"
            )

        conn = pyodbc.connect(DB_CONN)

        cursor = conn.cursor()
        #(23211,28690,33214,25638,25837,26454,28693,26137,31428,32087)
        query="select cast(filetext as varchar(max)) as filetext, name, type from dbo.UserworkspaceData where objectmasterid= "+\
               str(self.ObjectMasterId)+\
               " order by id asc"
        #query="select cast(filetext as varchar(max)) as filetext from kpl_tmp"
        documents = []
        document = ""
        name = ""
        filetype = 0
        for doc in cursor.execute(query):
            document = document + doc[0]
            name = doc[1]
            filetype = doc[2]
        #open("E:/kpl.txt","w+").write(document)
        documents.append(document)
        #documents.replace("\n\n","\n")
        #r.sub("",documents)
        #documents=" ".join(documents.split())
        #open("E:\kpl_test.txt","w+").write(document)
        #doc="D:\Document QnA\document-qa-master\Data\Drug_Delivery_Surveying_Global_Competitive_Landscape_BMI.txt"
        # =============================================================================
        #     if not isfile(doc):
        #         raise ValueError(doc + " does not exist")
        #     with open(doc, "r") as f:
        #         documents.append(f.read())
        # =============================================================================

        #print("Loaded %d documents" % len(documents))
        #temp=documents[0].split()
        # Split documents into lists of paragraphs
        #documents=[" ".join(temp[i:(i+400)]) for i in range(1,len(temp),400)]
        documents = [re.split("\s*\n\s*", doc) for doc in documents]
        # Tokenize the input, the models expects data to be tokenized using `NltkAndPunctTokenizer`
        # Note the model expects case-sensitive input
        tokenizer = NltkAndPunctTokenizer()
        question = tokenizer.tokenize_paragraph_flat(
            self.Question)  # List of words

        # Now list of document->paragraph->sentence->word
        documents = [[tokenizer.tokenize_paragraph(p) for p in doc]
                     for doc in documents]

        # Now group the document into paragraphs, this returns `ExtractedParagraph` objects
        # that additionally remember the start/end token of the paragraph within the source document
        splitter = MergeParagraphs(400)
        #splitter = PreserveParagraphs() # Uncomment to use the natural paragraph grouping
        documents = [splitter.split(doc) for doc in documents]
        #print(str(len(documents))+" kpl") #kpl
        # Now select the top paragraphs using a `ParagraphFilter`
        if len(documents) == 1:
            # Use TF-IDF to select top paragraphs from the document
            selector = TopTfIdf(NltkPlusStopWords(True), n_to_select=5)
            context = selector.prune(question, documents[0])
        else:
            # Use a linear classifier to select top paragraphs among all the documents
            selector = ShallowOpenWebRanker(n_to_select=10)
            context = selector.prune(question, flatten_iterable(documents))

    #print("Select %d paragraph" % len(context))

        if model.preprocessor is not None:
            # Models are allowed to define an additional pre-processing step
            # This will turn the `ExtractedParagraph` objects back into simple lists of tokens
            context = [
                model.preprocessor.encode_text(question, x) for x in context
            ]
        else:
            # Otherwise just use flattened text
            context = [flatten_iterable(x.text) for x in context]
        #x=open("E:\context.txt","a+")
        #[x.write(" ".join(cont)) for cont in context]
        #x.write("\n.......................................................\n")

        #print("Setting up model")
        # Tell the model the batch size (can be None) and vocab to expect, This will load the
        # needed word vectors and fix the batch size to use when building the graph / encoding the input
        voc = set(question)
        for txt in context:
            voc.update(txt)

        model.set_input_spec(self.nlp,
                             ParagraphAndQuestionSpec(batch_size=len(context)),
                             voc)
        # Now we build the actual tensorflow graph, `best_span` and `conf` are
        # tensors holding the predicted span (inclusive) and confidence scores for each
        # element in the input batch, confidence scores being the pre-softmax logit for the span
        #print("Build tf graph") #kpl
        sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
        # We need to use sess.as_default when working with the cuNND stuff, since we need an active
        # session to figure out the # of parameters needed for each layer. The cpu-compatible models don't need this.
        with sess.as_default():
            # 8 means to limit the span to size 8 or less
            best_spans, conf = model.get_prediction().get_best_span(8)

    # Loads the saved weights
        model_dir.restore_checkpoint(sess)

        # Now the model is ready to run
        # The model takes input in the form of `ContextAndQuestion` objects, for example:
        data = [
            ParagraphAndQuestion(x, question, None, "user-question%d" % i)
            for i, x in enumerate(context)
        ]

        #print("Starting run")
        # The model is run in two steps, first it "encodes" a batch of paragraph/context pairs
        # into numpy arrays, then we use `sess` to run the actual model get the predictions
        encoded = model.encode(
            data, is_train=True)  # batch of `ContextAndQuestion` -> feed_dict
        best_spans, conf = sess.run(
            [best_spans, conf], feed_dict=encoded)  # feed_dict -> predictions

        best_para = np.argmax(
            conf
        )  # We get output for each paragraph, select the most-confident one to print

        #print("Best Paragraph: " + str(best_para))
        #print("Best span: " + str(best_spans[best_para]))
        #print("Answer text: " + " ".join(context[best_para][best_spans[best_para][0]:best_spans[best_para][1]+1]))
        #print("Confidence: " + str(conf[best_para]))
        Answer = " ".join(context[best_para]
                          [best_spans[best_para][0]:best_spans[best_para][1] +
                           1])

        print("Confidence: " + str(conf[best_para]))
        print("Best Paragraph: " + str(best_para))
        print("Best span: " + str(best_spans[best_para]))
        print("Answer text: " + Answer)
        print(" ".join(context[best_para]))
        context[best_para][best_spans[best_para][
            0]] = r"<em>" + context[best_para][best_spans[best_para][0]]
        context[best_para][best_spans[best_para][1]] = context[best_para][
            best_spans[best_para][1]] + r"</em>"

        start = 0
        end = len(context[best_para])

        positions = [
            x for x, n in enumerate(context[best_para]
                                    [0:best_spans[best_para][0]]) if n == "."
        ]
        if len(positions) >= 2: start = positions[len(positions) - 2] + 1
        positions = [
            x
            for x, n in enumerate(context[best_para][best_spans[best_para][1] +
                                                     1:]) if n == "."
        ]
        if len(positions) > 1:
            end = best_spans[best_para][1] + 1 + positions[1]

        d = dict()
        if conf[best_para] > 10:
            d["answer"] = Answer
        else:
            d["answer"] = ""
        d["name"] = name
        d["filetype"] = filetype
        d["paragraph"] = re.sub(r' (?=\W)', '',
                                " ".join(context[best_para][start:end]))
        d["ObjectMasterId"] = self.ObjectMasterId

        return d


#if __name__ == "__main__":
#    main()
def main():
    parser = argparse.ArgumentParser(
        description="Run an ELMo model on user input")
    parser.add_argument("model", help="Model directory")
    parser.add_argument("question", help="Question to answer")
    parser.add_argument("context", help="Context to answer the question with")
    args = parser.parse_args()

    # Tokenize the input, the models expected data to be tokenized using `NltkAndPunctTokenizer`
    # Note the model expects case-sensitive input
    tokenizer = NltkAndPunctTokenizer()
    question = tokenizer.tokenize_paragraph_flat(args.question)
    context = tokenizer.tokenize_paragraph_flat(args.context)

    print("Loading model")
    model_dir = ModelDir(args.model)
    model = model_dir.get_model()
    if not isinstance(model, ElmoQaModel):
        raise ValueError(
            "This script is build to work for ElmoQaModel models only")

    # Important! This tells the language model not to use the pre-computed word vectors,
    # which are only applicable for the SQuAD dev/train sets.
    # Instead the language model will use its character-level CNN to compute
    # the word vectors dynamically.
    model.lm_model.embed_weights_file = None

    # Tell the model the batch size and vocab to expect, This will load the needed
    # word vectors and fix the batch size when building the graph / encoding the input
    print("Setting up model")
    voc = set(question)
    voc.update(context)
    model.set_input_spec(ParagraphAndQuestionSpec(batch_size=1), voc)

    # Now we build the actual tensorflow graph, `best_span` and `conf` are
    # tensors holding the predicted span (inclusive) and confidence scores for each
    # element in the input batch
    print("Build tf graph")
    sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
    with sess.as_default():
        # 17 means to limit the span to size 17 or less
        best_spans, conf = model.get_prediction().get_best_span(17)

    # Now restore the weights, this is a bit fiddly since we need to avoid restoring the
    # bilm weights, and instead load them from the pre-computed data
    all_vars = tf.global_variables() + tf.get_collection(
        tf.GraphKeys.SAVEABLE_OBJECTS)
    lm_var_names = {x.name for x in all_vars if x.name.startswith("bilm")}
    vars = [x for x in all_vars if x.name not in lm_var_names]
    model_dir.restore_checkpoint(sess, vars)

    # Run the initializer of the lm weights, which will load them from the lm directory
    sess.run(
        tf.variables_initializer(
            [x for x in all_vars if x.name in lm_var_names]))

    # Now the model is ready to run
    # The model takes input in the form of `ContextAndQuestion` objects, for example:
    data = [ParagraphAndQuestion(context, question, None, "user-question1")]

    print("Starting run")
    # The model is run in two steps, first it "encodes" the paragraph/context pairs
    # into numpy arrays, then to use `sess` to run the actual model get the predictions
    encoded = model.encode(
        data, is_train=False)  # batch of `ContextAndQuestion` -> feed_dict
    best_spans, conf = sess.run([best_spans, conf],
                                feed_dict=encoded)  # feed_dict -> predictions
    print("Best span: " + str(best_spans[0]))
    print("Answer text: " +
          " ".join(context[best_spans[0][0]:best_spans[0][1] + 1]))
    print("Confidence: " + str(conf[0]))
Exemple #17
0
def get_test_questions():
    paragraph = ["Harry", "Potter", "was", "written", "by", "JK"]
    question = ["Who", "wrote", "Harry", "Potter", "?"]
    return ParagraphAndQuestion(paragraph, question, None, "test_questions")
Exemple #18
0
def main(Data: pd.DataFrame, nlp, model_dir, model):
    #parser = argparse.ArgumentParser(description="Run an ELMo model on user input")
    #parser.add_argument("model", help="Model directory")
    #parser.add_argument("question", help="Question to answer")
    #parser.add_argument("documents", help="List of text documents to answer the question with", nargs='+')
    #args = parser.parse_args()

    #print("Preprocessing...")

    # Load the model
    #model_dir = ModelDir(MODEL_DIR)
    #model = model_dir.get_model()
    print(model)
    if not isinstance(model, ParagraphQuestionModel):
        raise ValueError(
            "This script is built to work for ParagraphQuestionModel models only"
        )
    #print(model)
    # Read the documents
    documents = []
    documents.append(Data.at[0, 'Filetext'])
    """import pyodbc

    conn = pyodbc.connect("Driver={ODBC Driver 13 for SQL Server};"               
               "Server=192.168.100.15;"
               "Database=PharmaAce;"
               "UID=sa;"
               "PWD=admin@123;"
               "Trusted_Connection=no;")

    cursor=conn.cursor()
#(23211,28690,33214,25638,25837,26454,28693,26137,31428,32087)

    for doc in cursor.execute("select cast(filetext as varchar(max)) as filetext from kpl_tmp"):
        documents.append(doc[0])
        #doc="D:\Document QnA\document-qa-master\Data\Drug_Delivery_Surveying_Global_Competitive_Landscape_BMI.txt"   
    if not isfile(doc):
        raise ValueError(doc + " does not exist")
    with open(doc, "r") as f:
        documents.append(f.read())
    """
    #print("Loaded %d documents" % len(documents))
    #temp=documents[0].split()
    # Split documents into lists of paragraphs
    #documents=[" ".join(temp[i:(i+400)]) for i in range(1,len(temp),400)]
    documents = [re.split("\s*\n\s*", doc) for doc in documents]
    # Tokenize the input, the models expects data to be tokenized using `NltkAndPunctTokenizer`
    # Note the model expects case-sensitive input
    tokenizer = NltkAndPunctTokenizer()
    question = tokenizer.tokenize_paragraph_flat(
        Data.at[0, 'Question'])  # List of words
    # Now list of document->paragraph->sentence->word
    documents = [[tokenizer.tokenize_paragraph(p) for p in doc]
                 for doc in documents]

    # Now group the document into paragraphs, this returns `ExtractedParagraph` objects
    # that additionally remember the start/end token of the paragraph within the source document
    splitter = MergeParagraphs(400)
    #splitter = PreserveParagraphs() # Uncomment to use the natural paragraph grouping
    documents = [splitter.split(doc) for doc in documents]
    #print(str(len(documents))+" kpl") #kpl
    # Now select the top paragraphs using a `ParagraphFilter`
    print(len(documents))  #kpl
    if len(documents) == 1:
        # Use TF-IDF to select top paragraphs from the document
        selector = TopTfIdf(NltkPlusStopWords(True), n_to_select=5)
        context = selector.prune(question, documents[0])
    else:
        # Use a linear classifier to select top paragraphs among all the documents
        selector = ShallowOpenWebRanker(n_to_select=10)
        context = selector.prune(question, flatten_iterable(documents))

    #print("Select %d paragraph" % len(context))

    if model.preprocessor is not None:
        # Models are allowed to define an additional pre-processing step
        # This will turn the `ExtractedParagraph` objects back into simple lists of tokens
        context = [
            model.preprocessor.encode_text(question, x) for x in context
        ]
    else:
        # Otherwise just use flattened text
        context = [flatten_iterable(x.text) for x in context]

    print("Setting up model")
    # Tell the model the batch size (can be None) and vocab to expect, This will load the
    # needed word vectors and fix the batch size to use when building the graph / encoding the input
    voc = set(question)
    for txt in context:
        voc.update(txt)
    model.set_input_spec(nlp,
                         ParagraphAndQuestionSpec(batch_size=len(context)),
                         voc)
    # Now we build the actual tensorflow graph, `best_span` and `conf` are
    # tensors holding the predicted span (inclusive) and confidence scores for each
    # element in the input batch, confidence scores being the pre-softmax logit for the span
    #print("Build tf graph") #kpl
    print("after set input spec")
    sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
    # We need to use sess.as_default when working with the cuNND stuff, since we need an active
    # session to figure out the # of parameters needed for each layer. The cpu-compatible models don't need this.
    with sess.as_default():
        # 8 means to limit the span to size 8 or less
        best_spans, conf = model.get_prediction().get_best_span(8)

    # Loads the saved weights
    model_dir.restore_checkpoint(sess)
    print("after loading weights")
    # Now the model is ready to run
    # The model takes input in the form of `ContextAndQuestion` objects, for example:
    data = [
        ParagraphAndQuestion(x, question, None, "user-question%d" % i)
        for i, x in enumerate(context)
    ]

    #print("Starting run")
    # The model is run in two steps, first it "encodes" a batch of paragraph/context pairs
    # into numpy arrays, then we use `sess` to run the actual model get the predictions
    encoded = model.encode(
        data, is_train=True)  # batch of `ContextAndQuestion` -> feed_dict
    best_spans, conf = sess.run([best_spans, conf],
                                feed_dict=encoded)  # feed_dict -> predictions

    best_para = np.argmax(
        conf
    )  # We get output for each paragraph, select the most-confident one to print

    #print("Best Paragraph: " + str(best_para))
    #print("Best span: " + str(best_spans[best_para]))
    #print("Answer text: " + " ".join(context[best_para][best_spans[best_para][0]:best_spans[best_para][1]+1]))
    #print("Confidence: " + str(conf[best_para]))

    return " ".join(
        context[best_para][best_spans[best_para][0]:best_spans[best_para][1] +
                           1])


#if __name__ == "__main__":
#    main()
def main():
    parser = argparse.ArgumentParser(
        description="Run an ELMo model on user input")
    parser.add_argument("model", help="Model directory")
    parser.add_argument("ja_filepath", help="File path to japanese questions")
    parser.add_argument("result_file",
                        help="File path to predicted result json")
    args = parser.parse_args()
    print(args)

    print("Preprocessing...")

    paragraphs, questions = read_squad_style_database(args.ja_filepath)
    # Load the model
    model_dir = ModelDir(args.model)
    model = model_dir.get_model()
    if not isinstance(model, ParagraphQuestionModel):
        raise ValueError(
            "This script is built to work for ParagraphQuestionModel models only"
        )

    paragraphs, questions = read_squad_style_database(args.ja_filepath)
    predictions = {}
    predictions["conf"] = {}
    for qa in questions:
        print(qa["id"])

        title = qa["title"]
        para_idx = qa["para_idx"]

        context = paragraphs[title][para_idx]
        question = qa["question"]

        print(context)
        print(question)

        if model.preprocessor is not None:
            context = [
                model.preprocessor.encode_text(question, x) for x in context
            ]

        print("Setting up model")

        voc = set(question)
        for txt in context:
            voc.update(txt)
        model.set_input_spec(ParagraphAndQuestionSpec(batch_size=len(context)),
                             voc)

        print("Build tf graph")
        sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
        with sess.as_default():
            best_spans, conf = model.get_prediction().get_best_span(8)

        # Loads the saved weights
        model_dir.restore_checkpoint(sess)

        data = [
            ParagraphAndQuestion(x, question, None, "user-question%d" % i)
            for i, x in enumerate(context)
        ]

        print("Starting run")

        encoded = model.encode(
            data, is_train=False)  # batch of `ContextAndQuestion` -> feed_dict
        best_spans, conf = sess.run(
            [best_spans, conf], feed_dict=encoded)  # feed_dict -> predictions
        print(best_spans)
        predictions[qa["id"]] = best_spans
        predictions["conf"][qa["id"]] = conf
        print(predictions)

    result_f = open(args.result_file, "w")
    json.dump(predictions, result_f)
    exit()
    official_evaluator = OfficialEvaluator(args.ja_filepath, args.result_file)
    evaluation = official_evaluator.evaluate()
    print(evaluation)
def main():
    parser = argparse.ArgumentParser(description="Run an ELMo model on user input")
    # parser.add_argument("model", type=int, help="Model directory")
    parser.add_argument("question", help="Question to answer")
    parser.add_argument("documents", help="List of text documents to answer the question with", nargs='+')
    args = parser.parse_args()

    # Models path
    SQUAD_MODEL_DIRECTORY_PATH = 'docqa/models-cpu/squad'
    SQUAD_SHARED_NORM_MODEL_DIRECTORY_PATH = 'docqa/models-cpu/squad-shared-norm'
    TRIVIAQA_MODEL_DIRECTORY_PATH = 'docqa/models-cpu/triviaqa-unfiltered-shared-norm'
    TRIVIAQA_SHARED_NORM_MODEL_DIRECTORY_PATH = 'docqa/models-cpu/triviaqa-web-shared-norm'
    
    models_directory = [
        SQUAD_MODEL_DIRECTORY_PATH,
        SQUAD_SHARED_NORM_MODEL_DIRECTORY_PATH,
        TRIVIAQA_MODEL_DIRECTORY_PATH,
        TRIVIAQA_SHARED_NORM_MODEL_DIRECTORY_PATH
    ]

    print("Preprocessing...")

    # Load the model
    # model_dir = ModelDir(args.model)
    model_dir = ModelDir(models_directory[0])
    model = model_dir.get_model()
    if not isinstance(model, ParagraphQuestionModel):
        raise ValueError("This script is built to work for ParagraphQuestionModel models only")

    # Read the documents
    documents = []
    for doc in args.documents:
        if not isfile(doc):
            raise ValueError(doc + " does not exist")
        with open(doc, "r") as f:
            documents.append(f.read())
    print("Loaded %d documents" % len(documents))

    # Split documents into lists of paragraphs
    documents = [re.split("\s*\n\s*", doc) for doc in documents]

    # Tokenize the input, the models expects data to be tokenized using `NltkAndPunctTokenizer`
    # Note the model expects case-sensitive input
    tokenizer = NltkAndPunctTokenizer()
    question = tokenizer.tokenize_paragraph_flat(args.question)  # List of words
    # Now list of document->paragraph->sentence->word
    documents = [[tokenizer.tokenize_paragraph(p) for p in doc] for doc in documents]

    # Now group the document into paragraphs, this returns `ExtractedParagraph` objects
    # that additionally remember the start/end token of the paragraph within the source document
    splitter = MergeParagraphs(400)
    # splitter = PreserveParagraphs() # Uncomment to use the natural paragraph grouping
    documents = [splitter.split(doc) for doc in documents]

    # Now select the top paragraphs using a `ParagraphFilter`
    if len(documents) == 1:
        # Use TF-IDF to select top paragraphs from the document
        selector = TopTfIdf(NltkPlusStopWords(True), n_to_select=5)
        context = selector.prune(question, documents[0])
    else:
        # Use a linear classifier to select top paragraphs among all the documents
        selector = ShallowOpenWebRanker(n_to_select=10)
        context = selector.prune(question, flatten_iterable(documents))

    print("Select %d paragraph" % len(context))

    if model.preprocessor is not None:
        # Models are allowed to define an additional pre-processing step
        # This will turn the `ExtractedParagraph` objects back into simple lists of tokens
        context = [model.preprocessor.encode_text(question, x) for x in context]
    else:
        # Otherwise just use flattened text
        context = [flatten_iterable(x.text) for x in context]
        
    print("Setting up model")
    
    # Tell the model the batch size (can be None) and vocab to expect, This will load the
    # needed word vectors and fix the batch size to use when building the graph / encoding the input
    voc = set(question)
    for txt in context:
        voc.update(txt)
    model.set_input_spec(ParagraphAndQuestionSpec(batch_size=len(context)), voc)

    # Now we build the actual tensorflow graph, `best_span` and `conf` are
    # tensors holding the predicted span (inclusive) and confidence scores for each
    # element in the input batch, confidence scores being the pre-softmax logit for the span
    print("Build tf graph")
    sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
    # We need to use sess.as_default when working with the cuNND stuff, since we need an active
    # session to figure out the # of parameters needed for each layer. The cpu-compatible models don't need this.
    with sess.as_default():
        # 8 means to limit the span to size 8 or less
        best_spans, conf = model.get_prediction().get_best_span(10)

    # Loads the saved weights
    model_dir.restore_checkpoint(sess)

    # Now the model is ready to run
    # The model takes input in the form of `ContextAndQuestion` objects, for example:
    data = [ParagraphAndQuestion(x, question, None, "user-question%d"%i)
            for i, x in enumerate(context)]

    print("Starting run")
    # The model is run in two steps, first it "encodes" a batch of paragraph/context pairs
    # into numpy arrays, then we use `sess` to run the actual model get the predictions
    encoded = model.encode(data, is_train=False)  # batch of `ContextAndQuestion` -> feed_dict
    best_spans, conf = sess.run([best_spans, conf], feed_dict=encoded)  # feed_dict -> predictions

    best_para = np.argmax(conf)  # We get output for each paragraph, select the most-confident one to print
    print("Best Paragraph: " + str(best_para))
    para_id = int(str(best_para))
    # print("Best Paragraph: \n" + (" ".join((paras[para_id].text)[0])))
    print("Best Paragraph: \n" + " ".join(context[para_id]))
    print("Best span: " + str(best_spans[best_para]))
    print("Answer text: " + " ".join(context[best_para][best_spans[best_para][0]:best_spans[best_para][1]+1]))
    print("Confidence: " + str(conf[best_para]))
Exemple #21
0
def predict():
    json_data = {"success": False, "predictions": []}
    print("Preprocessing...")

    # Load the model
    model_dir = ModelDir(
        "/home/antriv/conversation_ai/Transfer_Learning/ALLENAI_DocumentQA/document-qa/pretrained_models/models/triviaqa-unfiltered-shared-norm"
    )
    model = model_dir.get_model()
    if not isinstance(model, ParagraphQuestionModel):
        raise ValueError(
            "This script is built to work for ParagraphQuestionModel models only"
        )

    # Load the question
    question = (flask.request.data).decode("utf-8")

    # Read the documents
    documents = []
    doclist = ["/home/antriv/data/The-Future-Computed.txt"]
    for doc in doclist:
        if not isfile(doc):
            raise ValueError(doc + " does not exist")
        with open(doc, "r") as f:
            documents.append(f.read())
    print("Loaded %d documents" % len(documents))

    # Split documents into lists of paragraphs
    documents = [re.split("\s*\n\s*", doc) for doc in documents]

    # Tokenize the input, the models expects data to be tokenized using `NltkAndPunctTokenizer`
    # Note the model expects case-sensitive input
    tokenizer = NltkAndPunctTokenizer()
    question = tokenizer.tokenize_paragraph_flat(question)  # List of words
    # Now list of document->paragraph->sentence->word
    documents = [[tokenizer.tokenize_paragraph(p) for p in doc]
                 for doc in documents]

    # Now group the document into paragraphs, this returns `ExtractedParagraph` objects
    # that additionally remember the start/end token of the paragraph within the source document
    splitter = MergeParagraphs(400)
    #splitter = PreserveParagraphs() # Uncomment to use the natural paragraph grouping
    documents = [splitter.split(doc) for doc in documents]

    # Now select the top paragraphs using a `ParagraphFilter`
    if len(documents) == 1:
        # Use TF-IDF to select top paragraphs from the document
        selector = TopTfIdf(NltkPlusStopWords(True), n_to_select=1000)
        context = selector.prune(question, documents[0])
    else:
        # Use a linear classifier to select top paragraphs among all the documents
        selector = ShallowOpenWebRanker(n_to_select=1000)
        context = selector.prune(question, flatten_iterable(documents))

    print("Select %d paragraph" % len(context))

    if model.preprocessor is not None:
        # Models are allowed to define an additional pre-processing step
        # This will turn the `ExtractedParagraph` objects back into simple lists of tokens
        context = [
            model.preprocessor.encode_text(question, x) for x in context
        ]
    else:
        # Otherwise just use flattened text
        context = [flatten_iterable(x.text) for x in context]

    print("Setting up model")
    # Tell the model the batch size (can be None) and vocab to expect, This will load the
    # needed word vectors and fix the batch size to use when building the graph / encoding the input
    voc = set(question)
    for txt in context:
        voc.update(txt)
    model.set_input_spec(ParagraphAndQuestionSpec(batch_size=len(context)),
                         voc)

    # Now we build the actual tensorflow graph, `best_span` and `conf` are
    # tensors holding the predicted span (inclusive) and confidence scores for each
    # element in the input batch, confidence scores being the pre-softmax logit for the span
    print("Build tf graph")
    sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
    # We need to use sess.as_default when working with the cuNND stuff, since we need an active
    # session to figure out the # of parameters needed for each layer. The cpu-compatible models don't need this.
    with sess.as_default():
        # 8 means to limit the span to size 8 or less
        best_spans, conf = model.get_prediction().get_best_span(8)

    # Loads the saved weights
    model_dir.restore_checkpoint(sess)

    # Now the model is ready to run
    # The model takes input in the form of `ContextAndQuestion` objects, for example:
    data = [
        ParagraphAndQuestion(x, question, None, "user-question%d" % i)
        for i, x in enumerate(context)
    ]

    print("Starting run")
    # The model is run in two steps, first it "encodes" a batch of paragraph/context pairs
    # into numpy arrays, then we use `sess` to run the actual model get the predictions
    encoded = model.encode(
        data, is_train=False)  # batch of `ContextAndQuestion` -> feed_dict
    best_spans, conf = sess.run([best_spans, conf],
                                feed_dict=encoded)  # feed_dict -> predictions

    best_para = np.argmax(
        conf
    )  # We get output for each paragraph, select the most-confident one to print
    print("Best Paragraph: " + str(best_para))
    print("Best span: " + str(best_spans[best_para]))
    print("Answer text: " +
          " ".join(context[best_para]
                   [best_spans[best_para][0]:best_spans[best_para][1] + 1]))
    print("Confidence: " + str(conf[best_para]))
    y_output = " ".join(
        context[best_para][best_spans[best_para][0]:best_spans[best_para][1] +
                           1])
    print(y_output)
    json_data["predictions"].append(str(y_output))

    #indicate that the request was a success
    json_data["success"] = True
    #return the data dictionary as a JSON response
    return flask.jsonify(json_data)
Exemple #22
0
def convert(model_dir, output_dir, best_weights=False):
    print("Load model")
    md = ModelDir(model_dir)
    model = md.get_model()
    dim = model.embed_mapper.layers[1].n_units
    global_step = tf.get_variable('global_step',
                                  shape=[],
                                  dtype='int32',
                                  initializer=tf.constant_initializer(0),
                                  trainable=False)

    print("Setting up cudnn version")
    #global_step = tf.get_variable('global_step', shape=[], dtype='int32', trainable=False)
    sess = tf.Session()
    sess.run(global_step.assign(0))
    with sess.as_default():
        model.set_input_spec(
            ParagraphAndQuestionSpec(1, None, None, 14), {"the"},
            ResourceLoader(lambda a, b: {"the": np.zeros(300, np.float32)}))

        print("Buiding graph")
        pred = model.get_prediction()

    test_questions = ParagraphAndQuestion(
        ["Harry", "Potter", "was", "written", "by", "JK"],
        ["Who", "wrote", "Harry", "Potter", "?"], None, "test_questions")

    print("Load vars")
    md.restore_checkpoint(sess)
    print("Restore finished")

    feed = model.encode([test_questions], False)
    cuddn_out = sess.run([pred.start_logits, pred.end_logits], feed_dict=feed)

    print("Done, copying files...")
    if not exists(output_dir):
        mkdir(output_dir)
    for file in listdir(model_dir):
        if isfile(file) and file != "model.npy":
            copyfile(join(model_dir, file), join(output_dir, file))

    print("Done, mapping tensors...")
    to_save = []
    to_init = []
    for x in tf.trainable_variables():
        if x.name.endswith("/gru_parameters:0"):
            key = x.name[:-len("/gru_parameters:0")]
            fw_params = x
            if "map_embed" in x.name:
                c = cudnn_rnn_ops.CudnnGRU(1, dim, 400)
            elif "chained-out" in x.name:
                c = cudnn_rnn_ops.CudnnGRU(1, dim, dim * 4)
            else:
                c = cudnn_rnn_ops.CudnnGRU(1, dim, dim * 2)
            params_saveable = cudnn_rnn_ops.RNNParamsSaveable(
                c, c.params_to_canonical, c.canonical_to_params, [fw_params],
                key)

            for spec in params_saveable.specs:
                if spec.name.endswith("bias_cudnn 0") or \
                        spec.name.endswith("bias_cudnn 1"):
                    # ??? What do these even do?
                    continue
                name = spec.name.split("/")
                name.remove("cell_0")
                if "forward" in name:
                    ix = name.index("forward")
                    name.insert(ix + 2, "fw")
                else:
                    ix = name.index("backward")
                    name.insert(ix + 2, "bw")
                del name[ix]

                ix = name.index("multi_rnn_cell")
                name[ix] = "bidirectional_rnn"
                name = "/".join(name)
                v = tf.Variable(sess.run(spec.tensor), name=name)
                to_init.append(v)
                to_save.append(v)

        else:
            to_save.append(x)

    other = [
        x for x in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
        if x not in tf.trainable_variables()
    ]
    print(other)
    sess.run(tf.initialize_variables(to_init))
    saver = tf.train.Saver(to_save + other)
    save_dir = join(output_dir, "save")
    if not exists(save_dir):
        mkdir(save_dir)

    saver.save(sess, join(save_dir, "checkpoint"), sess.run(global_step))

    sess.close()
    tf.reset_default_graph()

    print("Updating model...")
    model.embed_mapper.layers = [
        model.embed_mapper.layers[0],
        BiRecurrentMapper(CompatGruCellSpec(dim))
    ]
    model.match_encoder.layers = list(model.match_encoder.layers)
    other = model.match_encoder.layers[1].other
    other.layers = list(other.layers)
    other.layers[1] = BiRecurrentMapper(CompatGruCellSpec(dim))

    pred = model.predictor.predictor
    pred.first_layer = BiRecurrentMapper(CompatGruCellSpec(dim))
    pred.second_layer = BiRecurrentMapper(CompatGruCellSpec(dim))

    with open(join(output_dir, "model.pkl"), "wb") as f:
        pickle.dump(model, f)

    print("Testing...")
    with open(join(output_dir, "model.pkl"), "rb") as f:
        model = pickle.load(f)

    sess = tf.Session()

    model.set_input_spec(
        ParagraphAndQuestionSpec(1, None, None, 14), {"the"},
        ResourceLoader(lambda a, b: {"the": np.zeros(300, np.float32)}))
    pred = model.get_prediction()

    print("Rebuilding")
    saver = tf.train.Saver()
    saver.restore(sess, tf.train.latest_checkpoint(save_dir))

    feed = model.encode([test_questions], False)
    cpu_out = sess.run([pred.start_logits, pred.end_logits], feed_dict=feed)

    print("These should be close:")
    print([np.allclose(a, b) for a, b in zip(cpu_out, cuddn_out)])
    print(cpu_out)
    print(cuddn_out)