Exemple #1
0
def traction_1d(
    ell=0.1,
    degree=1,
    n=3,
    E=1.,
    load_min=0,
    load_max=2,
    loads=None,
    nsteps=20,
    Lx=1,
    outdir="outdir",
    postfix='',
    savelag=1,
    sigma_D0=1.,
    continuation=False,
    checkstability=True,
    configString='',
    breakifunstable=False,
):
    # constants
    ell = ell
    Lx = Lx
    load_min = load_min
    load_max = load_max
    nsteps = nsteps
    outdir = outdir
    loads = loads

    savelag = 1
    ell = dolfin.Constant(ell)
    E0 = dolfin.Constant(E)
    sigma_D0 = E0
    n = n
    continuation = continuation
    config = json.loads(configString) if configString != '' else ''

    cmd_parameters = {
        'material': {
            "ell": ell.values()[0],
            "E": E0.values()[0],
            "sigma_D0": sigma_D0.values()[0]
        },
        'geometry': {
            'Lx': Lx,
            'n': n,
        },
        'experiment': {
            'signature': '',
            'break-if-unstable': breakifunstable
        },
        'stability': {
            'checkstability': checkstability,
            'continuation': continuation
        },
        'time_stepping': {
            'load_min': load_min,
            'load_max': load_max,
            'nsteps': nsteps,
            'outdir': outdir,
            'postfix': postfix,
            'savelag': savelag
        },
        'alt_min': {},
        "code": {}
    }

    if config:
        for par in config:
            parameters[par].update(config[par])
    else:
        for par in parameters:
            parameters[par].update(cmd_parameters[par])
    print(parameters)

    signature = hashlib.md5(str(parameters).encode('utf-8')).hexdigest()
    outdir += '-{}{}'.format(signature,
                             cmd_parameters['time_stepping']['postfix'])
    # outdir += '-{}'.format(cmd_parameters['time_stepping']['postfix'])
    parameters['time_stepping']['outdir'] = outdir
    Path(outdir).mkdir(parents=True, exist_ok=True)
    print('Outdir is: ' + outdir)

    with open(os.path.join(outdir, 'rerun.sh'), 'w') as f:
        configuration = deepcopy(parameters)
        configuration['time_stepping'].pop('outdir')
        str(configuration).replace("\'True\'",
                                   "True").replace("\'False\'", "False")
        rerun_cmd = 'python3 {} --config="{}"'.format(
            os.path.basename(__file__), configuration)
        f.write(rerun_cmd)

    with open(os.path.join(outdir, 'parameters.pkl'), 'w') as f:
        json.dump(parameters, f)

    with open(os.path.join(outdir, 'signature.md5'), 'w') as f:
        f.write(signature)

    print('experiment = {}'.format(
        os.path.join('~/Documents/WIP/paper_stability_code', outdir)))
    mesh = dolfin.IntervalMesh(int(float(n * Lx / ell)), -Lx / 2., Lx / 2.)
    meshf = dolfin.File(os.path.join(outdir, "mesh.xml"))
    meshf << mesh

    left = dolfin.CompiledSubDomain("near(x[0], -Lx/2.)", Lx=Lx)
    right = dolfin.CompiledSubDomain("near(x[0], Lx/2.)", Lx=Lx)

    mf = dolfin.MeshFunction("size_t", mesh, 1, 0)
    right.mark(mf, 1)
    left.mark(mf, 2)
    # bottom.mark(mf, 3)
    ds = dolfin.Measure("ds", subdomain_data=mf)
    dx = dolfin.Measure("dx", metadata=form_compiler_parameters, domain=mesh)

    # Function Spaces
    V_u = dolfin.FunctionSpace(mesh, "CG", 1)
    V_alpha = dolfin.FunctionSpace(mesh, "CG", 1)
    u = dolfin.Function(V_u, name="Total displacement")
    alpha = dolfin.Function(V_alpha, name="Damage")
    state = [u, alpha]

    Z = dolfin.FunctionSpace(
        mesh, dolfin.MixedElement([u.ufl_element(),
                                   alpha.ufl_element()]))
    z = dolfin.Function(Z)

    v, beta = dolfin.split(z)

    # BCs (homogenous version needed for residual evaluation)
    ut = dolfin.Expression("t", t=0.0, degree=0)
    bcs_u = [
        dolfin.DirichletBC(V_u, dolfin.Constant(0), left),
        dolfin.DirichletBC(V_u, ut, right)
    ]

    bcs_alpha = []

    # bcs_alpha = [dolfin.DirichletBC(V_alpha, dolfin.Constant(1.), right)]

    # Files for output
    ColorPrint.print_warn('Outdir = {}'.format(outdir))
    file_out = dolfin.XDMFFile(os.path.join(outdir, "output.xdmf"))
    file_out.parameters["functions_share_mesh"] = True
    file_out.parameters["flush_output"] = True
    file_con = dolfin.XDMFFile(os.path.join(outdir, "cont.xdmf"))
    file_con.parameters["functions_share_mesh"] = True
    file_con.parameters["flush_output"] = True
    file_eig = dolfin.XDMFFile(os.path.join(outdir, "modes.xdmf"))
    file_eig.parameters["functions_share_mesh"] = True
    file_eig.parameters["flush_output"] = True

    # Problem definition
    # model = DamageElasticityModel1D(state, E0, ell, sigma_D0)
    #
    k_ell = 1e-8
    a = (1 - alpha)**2. + k_ell
    w_1 = parameters['material']['sigma_D0']**2 / parameters['material']['E']
    w = w_1 * alpha
    eps = u.dx(0)

    # sigma = parameters['material']['E']*eps
    # energy = 1./2.* parameters['material']['E']*a*eps**2. * dx + (w + w_1 * parameters['material']['ell'] ** 2. * alpha.dx(0)**2.)*dx

    # # Rayleigh Ratio
    # rP = (dolfin.sqrt(a)*sigma + dolfin.diff(a, alpha)/dolfin.sqrt(a)*sigma*beta)*(dolfin.sqrt(a)*v.dx(0) + dolfin.diff(a, alpha)/dolfin.sqrt(a)*eps*beta)*dx + \
    #                 2*w_1*parameters['material']['ell'] ** 2 * beta.dx(0)**2*dx

    # da = dolfin.diff(a, alpha)
    # dda = dolfin.diff(dolfin.diff(a, alpha), alpha)
    # ddw = dolfin.diff(dolfin.diff(w, alpha), alpha)

    # rN = -(1./2.*(dda - da**2./a)*sigma*eps +1./2.*ddw)*beta**2.*dx
    # import pdb; pdb.set_trace()

    # ------------------------------

    model = DamageElasticityModel1D(state, E0, ell, sigma_D0)
    model.dx = dx
    # energy = model.total_energy_density(u, alpha)*model.dx
    energy = 1. / 2. * parameters['material']['E'] * a * eps**2. * dx + (
        w + w_1 * parameters['material']['ell']**2. * alpha.dx(0)**2.) * dx
    rP = model.rP(u, alpha, v, beta) * model.dx
    rN = model.rN(u, alpha, beta) * model.dx

    # Alternate minimisation solver
    # import pdb; pdb.set_trace()
    solver = solvers.AlternateMinimizationSolver(
        energy, [u, alpha], [bcs_u, bcs_alpha],
        parameters=parameters['alt_min'])

    stability = StabilitySolver(mesh,
                                energy, [u, alpha], [bcs_u, bcs_alpha],
                                z,
                                rayleigh=[rP, rN],
                                parameters=parameters['stability'])
    # stability = StabilitySolver(mesh, energy, [u, alpha], [bcs_u, bcs_alpha], z, parameters = parameters['stability'])

    # Time iterations
    load_steps = np.linspace(load_min, load_max,
                             parameters['time_stepping']['nsteps'])
    # load_steps = np.logspace(np.log10(load_min), np.log10(load_max), parameters['time_stepping']['nsteps'])

    if loads:
        load_steps = loads

    stability.parameters['checkstability'] = True

    time_data = []

    linesearch = LineSearch(energy, [u, alpha])
    alpha_old = dolfin.Function(alpha.function_space())
    lmbda_min_prev = 0.000001
    bifurcated = False
    bifurcation_loads = []
    save_current_bifurcation = False
    bifurc_i = 0
    alpha_bif = dolfin.Function(V_alpha)
    alpha_bif_old = dolfin.Function(V_alpha)

    lmbda_min_prev = 0.000001
    bifurcated = False

    bifurcation_loads = []
    time_data_pd = []
    for it, load in enumerate(load_steps):
        # import pdb; pdb.set_trace()
        ut.t = load
        alpha_old.assign(alpha)

        ColorPrint.print_warn('Solving load t = {:.2f}'.format(load))

        # First order stability conditions
        (time_data_i, am_iter) = solver.solve()
        # import pdb; pdb.set_trace()

        # Second order stability conditions
        (stable, negev) = stability.solve(solver.problem_alpha.lb)
        ColorPrint.print_pass(
            'Current state is{}stable'.format(' ' if stable else ' un'))

        solver.update()
        #
        mineig = stability.mineig if hasattr(stability, 'mineig') else 0.0
        print('lmbda min', lmbda_min_prev)
        print('mineig', mineig)
        Deltav = (mineig - lmbda_min_prev) if hasattr(stability, 'eigs') else 0

        if (mineig + Deltav) * (lmbda_min_prev +
                                dolfin.DOLFIN_EPS) < 0 and not bifurcated:
            bifurcated = True

            # save 3 bif modes
            print('About to bifurcate load ', load, 'step', it)
            bifurcation_loads.append(load)
            modes = np.where(stability.eigs < 0)[0]

            with dolfin.XDMFFile(os.path.join(outdir,
                                              "postproc.xdmf")) as file:
                leneigs = len(modes)
                maxmodes = min(3, leneigs)
                for n in range(maxmodes):
                    mode = dolfin.project(stability.linsearch[n]['beta_n'],
                                          V_alpha)
                    modename = 'beta-%d' % n
                    print(modename)
                    file.write_checkpoint(mode, modename, 0, append=True)

            bifurc_i += 1

        lmbda_min_prev = mineig if hasattr(stability, 'mineig') else 0.

        # stable == True

        time_data_i["load"] = load
        time_data_i["stable"] = stable

        time_data_i["elastic_energy"] = dolfin.assemble(
            1. / 2. * parameters['material']['E'] * a * eps**2. * dx)
        time_data_i["dissipated_energy"] = dolfin.assemble(
            (w + w_1 * parameters['material']['ell']**2. * alpha.dx(0)**2.) *
            dx)

        time_data_i["elastic_energy"] = dolfin.assemble(
            model.elastic_energy_density(u.dx(0), alpha) * dx)
        time_data_i["dissipated_energy"] = dolfin.assemble(
            model.damage_dissipation_density(alpha) * dx)

        time_data_i["eigs"] = stability.eigs if hasattr(stability,
                                                        'eigs') else np.inf
        time_data_i["stable"] = stability.stable
        time_data_i["# neg ev"] = stability.negev
        # import pdb; pdb.set_trace()

        # time_data_i["S(alpha)"] = dolfin.assemble(1./(a)*dx)
        # time_data_i["a(alpha)"] = dolfin.assemble(a*dx)
        # time_data_i["avg_alpha"] = dolfin.assemble(alpha*dx)

        ColorPrint.print_pass(
            "Time step {:.4g}: it {:3d}, err_alpha={:.4g}".format(
                time_data_i["load"], time_data_i["iterations"],
                time_data_i["alpha_error"]))

        time_data.append(time_data_i)
        time_data_pd = pd.DataFrame(time_data)

        if np.mod(it, savelag) == 0:
            with file_out as f:
                f.write(alpha, load)
                f.write(u, load)
            with dolfin.XDMFFile(os.path.join(outdir,
                                              "output_postproc.xdmf")) as f:
                f.write_checkpoint(alpha,
                                   "alpha-{}".format(it),
                                   0,
                                   append=True)
                print('DEBUG: written step ', it)

        time_data_pd.to_json(os.path.join(outdir, "time_data.json"))

        # if size == 1:
        #     plt.figure()
        #     dolfin.plot(alpha, marker='o')
        #     plt.savefig(os.path.join(outdir, "alpha-{}.png".format(it)))
        #     plt.figure()
        #     dolfin.plot(u, marker='o')
        #     plt.savefig(os.path.join(outdir, "u-{}.png".format(it)))
        #     plt.clf()

        if not stable and parameters['experiment']['break-if-unstable']:
            print('Unstable state, breaking',
                  parameters['experiment']['break-if-unstable'])
            break

    # print(time_data_pd)
    print()
    # print(time_data_pd['stable'])
    print('Output in: ' + outdir)

    # # solve optimal profile
    #   # Alternate minimisation solver
    # beta = dolfin.TestFunction(V_alpha)
    # dalpha = dolfin.TrialFunction(V_alpha)

    # F = (ell*alpha.dx(0)*alpha.dx(0) + w/ell*alpha)*dx
    # dF = dolfin.derivative(F,alpha,beta); ddF = dolfin.derivative(dF,alpha,dalpha)
    # # bcs_u = [dolfin.DirichletBC(V_u, dolfin.Constant(0.), 'on_boundary')]
    alpha = dolfin.Function(V_alpha)
    u = dolfin.Function(V_u)
    bcs_alpha = [
        dolfin.DirichletBC(V_alpha, dolfin.Constant(1.), right),
        dolfin.DirichletBC(V_alpha, dolfin.Constant(0.), left)
    ]
    solver = solvers.AlternateMinimizationSolver(
        energy, [u, alpha], [[], bcs_alpha], parameters=parameters['alt_min'])
    solver.solve()
    print('DEBUG: h1 norm alpha profile {}'.format(dolfin.norm(alpha, 'h1')))
    # ub = dolfin.interpolate(dolfin.Constant(1.), V_alpha); lb = dolfin.interpolate(dolfin.Constant(0.), V_alpha)
    # profile = dolfin.NonlinearVariationalProblem(dF, alpha, bcs_alpha, J = ddF)
    # profile.set_bounds(lb, ub)
    # solver_nl = dolfin.NonlinearVariationalSolver(profile)
    # snes_solver_parameters_bounds = {"nonlinear_solver": "snes",
    #                       "snes_solver": {"linear_solver": "cg",
    #                                       "maximum_iterations": 100,
    #                                       "report": True,
    #                                       "line_search": "basic",
    #                                       "method":"vinewtonrsls",
    #                                       "absolute_tolerance":1e-6,
    #                                       "relative_tolerance":1e-6,
    #                                       "solution_tolerance":1e-6}}
    # solver_nl.parameters.update(snes_solver_parameters_bounds)
    # solver_nl.solve()

    xs = np.linspace(-Lx / 2., Lx / 2., 100)
    profile = np.array([alpha(x) for x in xs])
    plt.figure()
    plt.plot(xs, profile, marker='o')
    # plt.plot(xs, np.array([u(x) for x in xs]))
    plt.savefig(os.path.join(outdir, 'profile.pdf'))
    # import pdb; pdb.set_trace()

    return time_data_pd, outdir
Exemple #2
0
    def test_5_1D_poisson_solver(self):
        """Test a Poisson solve in 1D radial spherical coordinates starting at r = 0.

           The mesh and mesh BC markers used here read from files written by
           test_1D_spherical_mesh in test_UserMesh.py.  

           The charge-density is from a file written by
           test_6_compute_charge_density_on_1Dmesh() in test_ChargeDensity.py.

           The potential is set to zero at the outer radius at 5 meters.  At the
           inner radius (0) no value is set, and so the slope is zero.

           See Calc file test_FieldSolve.ods:test_5 for calculation of potential

        """

        fncName = '(' + __file__ + ') ' + sys._getframe(
        ).f_code.co_name + '():\n'
        print('\ntest: ', fncName)

        ### Specialized mesh and field-solver modules for this test ###

        from UserMesh_y_Fields_Spherical1D_Module import UserMesh1DS_C
        from UserMesh_y_Fields_Spherical1D_Module import UserMeshInput1DS_C
        from UserMesh_y_Fields_Spherical1D_Module import UserPoissonSolve1DS_C

        ### Read the mesh and boundary-condition markers ###

        # Create a mesh object and read in the mesh.
        coordinateSystem = '1D-spherical-radial'
        mesh1d_M = Mesh_C(
            mesh_file='mesh_1D_radial_r0.xml',
            coordinate_system=coordinateSystem,
            field_boundary_marker_file='mesh_1D_radial_r0_Fbcs.xml',
            compute_dictionaries=True,
            compute_cpp_arrays=False,
            compute_tree=True,
            plot_flag=self.plot_mesh)

        ### Create the charge-density vector ###

        chargeDensityElementType = 'Lagrange'
        chargeDensityElementDegree = 1
        chargeDensityFieldType = 'scalar'

        chargeDensity_F = Field_C(mesh_M=mesh1d_M,
                                  element_type=chargeDensityElementType,
                                  element_degree=chargeDensityElementDegree,
                                  field_type=chargeDensityFieldType)

        ### Set the charge density values ###

        # Read in the charge-density written by
        # test_ChargeDensity.py:test_5_compute_charge_density_on_1Dmesh
        file = df_m.File("charge_1DS_r0.xml")
        file >> chargeDensity_F.function

        ### Set the Poisson solver parameters ###

        linearSolver = 'lu'
        preconditioner = None

        ### Set the field boundary conditions ###

        # Copy over from test_ChargeDensity.py:test_5 for convenience in using the
        # integer markers to set boundary values.
        #
        # This associates the field marker integers with boundary names.
        rminIndx = 1
        rmaxIndx = 2
        fieldBoundaryDict = {
            'rmin': rminIndx,
            'rmax': rmaxIndx,
        }

        # Dirichlet boundaries are applied using a mesh function that marks the outer
        # edges of the mesh.
        fieldBoundaryMarker = mesh1d_M.field_boundary_marker

        # Specify the boundary values of the potential
        phiVals = {
            'rmin': 'unset',  # Analytic potential inside the particle radius
            'rmax': 0.0,
        }

        phiBCs = dict((bnd, [fieldBoundaryDict[bnd], phiVals[bnd]])
                      for bnd in list(fieldBoundaryDict.keys()))

        ### Create vectors for for the potential and electric field ###

        phiElementType = 'Lagrange'
        phiElementDegree = 1
        phiFieldType = 'scalar'

        phi_F = Field_C(mesh_M=mesh1d_M,
                        element_type=phiElementType,
                        element_degree=phiElementDegree,
                        field_type=phiFieldType)

        if phiElementDegree == 1:
            # For linear elements, grad(phi) is discontinuous across
            # elements. To get these values, we need Discontinuous Galerkin
            # elements.
            electricFieldElementType = "DG"
        else:
            electricFieldElementType = "Lagrange"

        negElectricField_F = Field_C(mesh_M=mesh1d_M,
                                     element_type=electricFieldElementType,
                                     element_degree=phiElementDegree - 1,
                                     field_type='vector')

        ### Create the Poisson-solver object ###

        potentialsolve = UserPoissonSolve1DS_C(
            phi_F,
            linearSolver,
            preconditioner,
            fieldBoundaryMarker,
            phiBCs,
            neg_electric_field=negElectricField_F)

        # Create the source term from a given density
        # (In this test, the charge comes from kinetic point particles, rather
        # than from a density function, so the following isn't needed.)
        #        poissonsolve.assemble_source_expression(charge_density)

        #        self.b = df_m.assemble(self.L)

        # Solve for the potential
        plotTitle = os.path.basename(
            __file__) + ": " + sys._getframe().f_code.co_name
        #        poissonsolve.solve_for_phi(plot_flag=plotFlag, plot_title=plotTitle)

        spacechargeFactor = 1.0
        potentialsolve.solve_for_phi(assembled_charge=chargeDensity_F,
                                     assembled_charge_factor=spacechargeFactor,
                                     plot_flag=self.plot_results,
                                     plot_title=plotTitle)

        # Write the potential to a file in VTK and XML formats
        file = df_m.File('phi_test_5_1D.pvd')
        # phi_name goes into the output file; phi_label doesn't
        phi_F.function.rename("phi1D", "phi_label")
        file << phi_F.function
        file = df_m.File('phi_test_5_1D.xml')
        file << phi_F.function

        # Write -E to a file in VTK and XML formats
        if negElectricField_F is not None:
            negElectricField_F.function.rename("E1D", "E_label")
            # !!! VTK cannot write a vector field on a 1D grid.
            #            file = df_m.File("negE_test_5_1D.pvd")
            #            file << negElectricField_F.function
            file = df_m.File("negE_test_5_1D.xml")
            file << negElectricField_F.function

        # Check that -E has the analytic value at r=1.842
        # See test_FieldSolve.ods for values
        negE_arr = negElectricField_F.function.vector().get_local()
        #        print("negE_arr =", negE_arr)
        negE_at_1_842 = 2649589637.58845
        ratio = negE_at_1_842 / negE_arr[5]
        decimal_places = 2
        self.assertAlmostEqual(ratio,
                               1.0,
                               places=decimal_places,
                               msg="negE is not correct")
        print("test_5: negE is correct to %d decimal places; ratio = %.5g" %
              (decimal_places, ratio))

        return
Exemple #3
0
# set up the optimizer
prob.driver = driver = om.pyOptSparseDriver()
driver.options['optimizer'] = 'SNOPT'
driver.opt_settings['Verify level'] = 0

driver.opt_settings['Major iterations limit'] = 100000
driver.opt_settings['Minor iterations limit'] = 100000
driver.opt_settings['Iterations limit'] = 100000000
driver.opt_settings['Major step limit'] = 2.0

driver.opt_settings['Major feasibility tolerance'] = 1.0e-6
driver.opt_settings['Major optimality tolerance'] = 1.e-8

prob.setup()
prob.run_model()
# print(prob['compliance']); exit()
prob.run_driver()

#save the solution vector
if method == 'SIMP':
    penalized_density = df.project(density_function**3, density_function_space)
else:
    penalized_density = df.project(
        density_function / (1 + 8. * (1. - density_function)),
        density_function_space)

df.File('solutions/case_1/cantilever_beam/displacement.pvd'
        ) << displacements_function
df.File('solutions/case_1/cantilever_beam/penalized_density.pvd'
        ) << penalized_density
Exemple #4
0
pointwise_var_exact = dl.Vector()
Prior.init_vector(pointwise_var_exact, 0)
tic()
get_diagonal(Prior.Rsolver, pointwise_var_exact, solve_mode=True)
toc("Exact Elapsed: %s s")

print(pointwise_var -
      pointwise_var_exact).norm("linf") / (pointwise_var_exact).norm("linf")
print(pointwise_var_2 -
      pointwise_var_exact).norm("linf") / (pointwise_var_exact).norm("linf")

dl.plot(vector2Function(pointwise_var_exact - pointwise_var, Vh))
dl.plot(vector2Function(pointwise_var_exact - pointwise_var_2, Vh))
dl.interactive()

dl.File("marginal_variance.pvd") << vector2Function(pointwise_var, Vh, name="pointwise_variance") << \
vector2Function(pointwise_var_2, Vh, name="pointwise_variance") << vector2Function(pointwise_var_exact, Vh, name="pointwise_variance")

exit()


class RinvM:
    def mult(self, x, y):
        Prior.Rsolver.solve(y, Prior.M * x)

    def init_vector(self, x, dim):
        Prior.init_vector(x, dim)


class MRinv:
    def mult(self, x, y):
Exemple #5
0
    def test_3_1D_poisson_solver(self):
        """Test a 1D Poisson equation in cartesian coordinates.

           Note: the mesh, mesh BC markers, and the charge-density are read from
           external files written by test_4_compute_charge_density_on_1Dmesh() in
           test_ChargeDensity.py. Boundary values are specified here.

           See Calc file test_FieldSolve.ods for calculation of electric field.

        """

        fncName = '(' + __file__ + ') ' + sys._getframe(
        ).f_code.co_name + '():\n'
        print('\ntest: ', fncName)

        ### Specialized mesh and field-solver modules for this test ###

        from UserMesh_y_Fields_FE_XYZ_Module import UserMesh_C
        from UserMesh_y_Fields_FE_XYZ_Module import UserMeshInput_C
        from UserMesh_y_Fields_FE_XYZ_Module import UserPoissonSolve1D_C

        ### Read the mesh and boundary-condition markers ###

        # Create the mesh object and read in the mesh and boundary markers
        coordinateSystem = 'Cartesian'
        mesh1d_M = Mesh_C(mesh_file='mesh_2cell_1D.xml',
                          coordinate_system=coordinateSystem,
                          field_boundary_marker_file='mesh_2cell_1D_Fbcs.xml',
                          compute_dictionaries=True,
                          compute_cpp_arrays=False,
                          compute_tree=True,
                          plot_flag=self.plot_mesh)

        ### Create the charge-density vector ###

        # Copy over from test_ChargeDensity.py:test_4
        # This associates the field marker integers with boundaries.
        # IS THIS NEEDED?
        xminIndx = 1
        xmaxIndx = 2
        fieldBoundaryDict = {
            'xmin': xminIndx,
            'xmax': xmaxIndx,
        }

        chargeDensityElementType = 'Lagrange'
        chargeDensityElementDegree = 1
        chargeDensityFieldType = 'scalar'

        chargeDensity_F = Field_C(mesh_M=mesh1d_M,
                                  element_type=chargeDensityElementType,
                                  element_degree=chargeDensityElementDegree,
                                  field_type=chargeDensityFieldType)

        ### Set the charge density values ###

        # Read in the charge-density written by
        # test_ChargeDensity.py:test_4_compute_charge_density_on_1Dmesh
        file = df_m.File("charge_1D.xml")
        file >> chargeDensity_F.function

        ### Set the Poisson solver parameters ###

        linearSolver = 'lu'
        preconditioner = None

        ### Set the field boundary conditions ###

        # Dirichlet boundaries are applied using a mesh function that marks the outer
        # edges of the mesh.
        fieldBoundaryMarker = mesh1d_M.field_boundary_marker

        # Specify the boundary values of the potential
        phiVals = {
            'xmin': -2.0,
            'xmax': 1.0,
        }

        phiBCs = dict((bnd, [fieldBoundaryDict[bnd], phiVals[bnd]])
                      for bnd in list(fieldBoundaryDict.keys()))

        ### Create vectors for for the potential and electric field ###

        phiElementType = 'Lagrange'
        phiElementDegree = 1
        phiFieldType = 'scalar'

        phi_F = Field_C(mesh_M=mesh1d_M,
                        element_type=phiElementType,
                        element_degree=phiElementDegree,
                        field_type=phiFieldType)

        if phiElementDegree == 1:
            # For linear elements, grad(phi) is discontinuous across
            # elements. To get these values, we need Discontinuous Galerkin
            # elements.
            electricFieldElementType = "DG"
        else:
            electricFieldElementType = "Lagrange"

        negElectricField_F = Field_C(mesh_M=mesh1d_M,
                                     element_type=electricFieldElementType,
                                     element_degree=phiElementDegree - 1,
                                     field_type='vector')

        ### Create the Poisson-solver object ###

        poissonsolve = UserPoissonSolve1D_C(
            phi_F,
            linearSolver,
            preconditioner,
            fieldBoundaryMarker,
            phiBCs,
            neg_electric_field=negElectricField_F)

        # Create the source term from a given density
        # (In this test, the charge comes from kinetic point particles, rather
        # than from a density function, so the following isn't needed.)
        #        poissonsolve.assemble_source_expression(charge_density)

        #        self.b = df_m.assemble(self.L)

        # Solve for the potential
        plotTitle = os.path.basename(
            __file__) + ": " + sys._getframe().f_code.co_name
        poissonsolve.solve_for_phi(plot_flag=self.plot_results,
                                   plot_title=plotTitle)

        return
def testit(problem=None,
           nu=None,
           ininu=None,
           charvel=None,
           meshlvl=1,
           rho=1.,
           ParaviewOutput=False,
           scheme='TH'):

    meshfile = 'mesh/karman2D-rotcyl_lvl{0}.xml.gz'.format(meshlvl)
    physregs = 'mesh/karman2D-rotcyl_lvl{0}_facet_region.xml.gz'.\
        format(meshlvl)
    meshparams = dict(strtomeshfile=meshfile,
                      strtophysicalregions=physregs,
                      strtobcsobs=geodata)
    femp, stokesmatsc, rhsd = \
        dnsps.get_sysmats(problem=problem, nu=nu, bccontrol=False,
                          charvel=charvel, scheme=scheme, mergerhs=True,
                          meshparams=meshparams)
    soldict = {}
    soldict.update(stokesmatsc)  # containing A, J, JT
    soldict.update(femp)  # adding V, Q, invinds, diribcs

    ddir = 'data/'
    data_prfx = problem + '{2}_mesh{0}_Re{1}'.\
        format(meshlvl, femp['Re'], scheme)
    soldict.update(fv=rhsd['fv'],
                   fp=rhsd['fp'],
                   N=meshlvl,
                   nu=nu,
                   verbose=True,
                   vel_pcrd_stps=0,
                   vel_nwtn_tol=1e-10,
                   vel_nwtn_stps=10,
                   return_vp=True,
                   get_datastring=None,
                   dbcinds=femp['dbcinds'],
                   dbcvals=femp['dbcvals'],
                   data_prfx=ddir + data_prfx,
                   paraviewoutput=ParaviewOutput,
                   vfileprfx=proutdir + 'vel_',
                   pfileprfx=proutdir + 'p_')
    L = femp['charlen']  # characteristic length

    phionevec = np.zeros((femp['V'].dim(), 1))
    phionevec[femp['mvwbcinds'], :] = 1.
    phione = dolfin.Function(femp['V'])
    phione.vector().set_local(phionevec)
    pickx = dolfin.as_matrix([[1., 0.], [0., 0.]])
    picky = dolfin.as_matrix([[0., 0.], [0., 1.]])
    pox = pickx * phione
    poy = picky * phione

    phitwovec = np.zeros((femp['V'].dim(), 1))
    phitwovec[femp['mvwbcinds'], 0] = femp['mvwbcvals']
    phitwo = dolfin.Function(femp['V'])
    phitwo.vector().set_local(phitwovec)
    if ParaviewOutput:
        phifile = dolfin.File('results/phione.pvd')
        phifile << phitwo

    # getld = dnsps.LiftDragSurfForce(V=femp['V'], nu=nu,
    #                                 phione=phione, phitwo=phitwo,
    #                                 outflowds=femp['outflowds'],
    #                                 ldds=femp['liftdragds'])

    steady_state_res = \
        get_steady_state_res(V=femp['V'], gradvsymmtrc=True,
                             outflowds=femp['outflowds'], nu=nu)

    def comptorque(rotval, thingdict=None, returnitall=False):
        def rotcont(t, vel=None, p=None, memory={}):
            return rotval, memory

        rotcondict = {}
        dircntdict = dict(diricontbcinds=[femp['mvwbcinds']],
                          diricontbcvals=[femp['mvwbcvals']],
                          diricontfuncs=[rotcont],
                          diricontfuncmems=[rotcondict])
        soldict.update(dircntdict)
        soldict.update(dict(vel_start_nwtn=thingdict['vel_start_nwtn']))
        if ininu is not None and thingdict['vel_start_nwtn'] is None:
            inifemp, inistokesmatsc, inirhsd = \
                dnsps.get_sysmats(problem=problem, nu=ininu, bccontrol=False,
                                  charvel=charvel, scheme=scheme,
                                  mergerhs=True, meshparams=meshparams)
            soldict.update(inistokesmatsc)
            soldict.update(inifemp)
            soldict.update(fv=inirhsd['fv'], fp=inirhsd['fp'])
            vp_ss_nse = snu.solve_steadystate_nse(**soldict)
            soldict.update(dict(vel_start_nwtn=vp_ss_nse[0]))
            soldict.update(stokesmatsc)
            soldict.update(femp)
            soldict.update(fv=rhsd['fv'], fp=rhsd['fp'])

        vp_ss_nse = snu.solve_steadystate_nse(**soldict)
        thingdict.update(dict(vel_start_nwtn=vp_ss_nse[0]))

        if returnitall:
            vfun, pfun = dts.\
                expand_vp_dolfunc(vc=vp_ss_nse[0], pc=vp_ss_nse[1],
                                  V=femp['V'], Q=femp['Q'])
            # lift, drag = getld.evaliftdragforce(u=vfun, p=pfun)

            drag = steady_state_res(vfun, pfun, phi=pox)
            lift = steady_state_res(vfun, pfun, phi=poy)
            # phionex = phione.sub(0)

            trqe = steady_state_res(vfun, pfun, phi=phitwo)
            # trqe = getld.evatorqueSphere2D(u=vfun, p=pfun)
            a_1 = dolfin.Point(0.15, 0.2)
            a_2 = dolfin.Point(0.25, 0.2)
            pdiff = rho * pfun(a_2) - rho * pfun(a_1)
            return trqe, lift, drag, pdiff
        else:
            vfun, pfun = dts.\
                expand_vp_dolfunc(vc=vp_ss_nse[0], pc=vp_ss_nse[1],
                                  V=femp['V'], Q=femp['Q'])
            # trqe = getld.evatorqueSphere2D(u=vfun, p=pfun)
            trqe = steady_state_res(vfun, pfun, phi=phitwo)

            print('omeg: {0:.3e} -- trqe: {1:.3e}'.format(rotval, trqe))
            return np.abs(trqe)

    Um = charvel
    thingdict = dict(vel_start_nwtn=None)

    testrot = 0.
    trqe, lift, drag, pdif = comptorque(testrot, thingdict, returnitall=True)
    print('\n\n# ## Nonrotating Cylinder ')

    cdclfac = 2. / (rho * L * Um**2)
    trqefac = 4 / (Um**2 * rho * L**2)
    print('Cl: {0:.9f}'.format(cdclfac * lift))
    print('Cd: {0:.9f}'.format(cdclfac * drag))
    print('Ct: {0:.5e}'.format(trqefac * trqe))
    print('Delta P: {0:.9f}'.format(pdif))

    if charvel == 0.2:
        print('\n cp. values from Schaefer/Turek as in')
        print('www.featflow.de/en/benchmarks/cfdbenchmarking/flow/' +
              'dfg_benchmark1_re20.html:')
        print('Cl: {0:.8f}'.format(0.010618948146))
        print('Cd: {0:.8f}'.format(5.57953523384))
        print('Delta P: {0:.8f}'.format(0.11752016697))

    print('\n\n# ## Rotating Cylinder -- optimizing rotation for zero torque')
    tinfo = {}
    with dou.Timer(timerinfo=tinfo):
        res = sco.minimize_scalar(comptorque,
                                  args=(thingdict),
                                  options={'maxiter': 80},
                                  tol=1e-13)
    trqe, lift, drag, pdiff = comptorque(res['x'], thingdict, returnitall=True)

    print('\n# ## Rotating Cylinder -- optimized rotation for zero torque')
    print('omega*: {0:.8f}'.format(res['x'] * L / (2 * Um)))
    print('Cl: {0:.8f}'.format(cdclfac * lift))
    print('Cd: {0:.8f}'.format(cdclfac * drag))
    print('Ct: {0:.4e}'.format(trqefac * trqe))
    print('Delta P: {0:.8f}'.format(pdif))
    if charvel == 0.2:
        print('\n cp. values from Richter et. al')
        print('omega*: {0}'.format(0.00126293))
        print('Cl: {0}'.format(0.0047141))
        print('Cd: {0}'.format(5.579558))
        print('Delta P: {0}'.format(0.117520))
        T_sol_d2[cou_ti] = do.Function(V2)
        T_sol_d3[cou_ti] = do.Function(V2)

        #nearest-neighbor interpolation
        NDI = NearestNDInterpolator(dofs_x1, val_ti.vector().array())

        #ADD NOISE
        #delete 2nd line in 3D simulations
        T_sol_d2[cou_ti].vector()[:] = NDI(dofs_x2) + \
                         delta_ND * np.random.normal(mu_ND, sigma_ND, len(dofs_x2))

        T_sol_d3[cou_ti].vector()[:] = NDI(dofs_x2)

        if cou_ti == 10:
            #CHECK
            NDI_DHCP = do.File(os.path.join(savings_dol1, 'T_NDI_DHCP.pvd'))
            NDI_IHCP = do.File(os.path.join(savings_dol1, 'T_NDI_IHCP.pvd'))

            NDI_DHCP << val_ti
            NDI_IHCP << T_sol_d2[cou_ti]

    while itera1 < max_itera2:  # and exit_cri2 > whil_tol2:
        #primal problem
        #heat flux at S_in = g1
        T_step_d2 = nablaT_fun(
            V2,
            v2,
            hol_cyl2,
            A2,
            boundary_faces2,
            mark_in2,
Exemple #8
0
        field.setNumber(fid, 'XMax', 0 + geometry_parameters['X'])
        field.setNumber(fid, 'YMin', y)
        field.setNumber(fid, 'YMax', y + w)
        field.setNumber(fid, 'VIn', Vin)
        field.setNumber(fid, 'VOut', Vout)

        boxes.append(fid)
        fid += 1
    # Combine
    field.add('Min', fid)
    field.setNumbers(fid, 'FieldsList', boxes)
    field.setAsBackgroundMesh(fid)

    model.occ.synchronize()

    # gmsh.fltk.initialize()
    # gmsh.fltk.run()

    h5_filename = './test/two_solid_domain.h5'
    mesh_model2d(model, tags, h5_filename)

    mesh, markers, lookup = load_mesh2d(h5_filename)
    cell_f, facet_f = markers

    check_markers(cell_f, facet_f, lookup, geometry_parameters)

    gmsh.finalize()

    df.File('./test/two_solid_cells.pvd') << cell_f
    df.File('./test/two_solid_facets.pvd') << facet_f
Exemple #9
0
        field.setNumber(fid, 'YMin', ymin)
        field.setNumber(fid, 'YMax', ymax)
        field.setNumber(fid, 'VIn', Vin)
        field.setNumber(fid, 'VOut', Vout)
        field.setNumber(fid, 'Thickness', t)

        boxes.append(fid)
        fid += 1
    # Combine
    field.add('Min', fid)
    field.setNumbers(fid, 'FieldsList', boxes)
    field.setAsBackgroundMesh(fid)

    model.occ.synchronize()

    # gmsh.fltk.initialize()
    # gmsh.fltk.run()

    h5_filename = './test/fbb_domain.h5'
    mesh_model2d(model, tags, h5_filename)

    mesh, markers, lookup = load_mesh2d(h5_filename)
    cell_f, facet_f = markers

    check_markers(cell_f, facet_f, lookup, geometry_parameters)

    gmsh.finalize()

    df.File('./test/fbb_cells.pvd') << cell_f
    df.File('./test/fbb_facets.pvd') << facet_f
def generate_initial_condition(mesh,
                               county_geom,
                               total_pop,
                               infected_cases,
                               recovered_cases,
                               deceased_cases,
                               infected_total_state,
                               deceased_state,
                               save_path='./',
                               transmit_rate=1.16,
                               date=None,
                               FE_polynomial=1,
                               save_numpy=True,
                               save_vtu=True):

    # Define function space and all functions
    Vu = dl.FunctionSpace(mesh, "Lagrange", FE_polynomial)
    u = [dl.Function(Vu) for i in range(5)]

    # Determine the day index based on the given date
    if date is None:
        day_index = 0
    else:
        validate_date(date)
        d0 = datetime.strptime("2020-03-06", "%Y-%m-%d")
        d1 = datetime.strptime(date, "%Y-%m-%d")
        day_index = abs((d1 - d0)).days

    # Determine the infected and deseased data on the given date
    infected_pop = infected_cases[day_index, :]
    deceased_pop = deceased_cases[day_index, :]
    recovered_pop = recovered_cases[day_index, :]
    active_infected_pop = infected_pop - deceased_pop - recovered_pop
    susceptible_pop = total_pop - transmit_rate * active_infected_pop - deceased_pop - recovered_pop - active_infected_pop

    # Interpolate initial conditions of the deceased/recovered/infected density based on the total cases
    deceased_pop_ic = seird_ic(county_geom, deceased_pop)
    u[DE] = dl.interpolate(deceased_pop_ic, Vu)
    recovered_pop_ic = seird_ic(county_geom, recovered_pop)
    u[RE] = dl.interpolate(recovered_pop_ic, Vu)
    active_infected_pop_ic = seird_ic(county_geom, active_infected_pop)
    u[IN] = dl.interpolate(active_infected_pop_ic, Vu)
    exposed_pop_ic = seird_ic(county_geom, transmit_rate * active_infected_pop)
    u[EX] = dl.interpolate(exposed_pop_ic, Vu)
    susceptible_pop_ic = seird_ic(county_geom, susceptible_pop)
    u[SU] = dl.interpolate(susceptible_pop_ic, Vu)

    r1 = deceased_state[day_index] / (10000 * dl.assemble(u[DE] * dl.dx))
    print(r1)
    u[DE] = dl.project(r1 * u[DE], Vu)

    r2 = (infected_total_state[day_index] -
          deceased_state[day_index]) / (10000 * dl.assemble(
              (u[IN] + u[RE]) * dl.dx))
    print(r2)
    u[IN] = dl.project(r2 * u[IN], Vu)
    u[RE] = dl.project(r2 * u[RE], Vu)

    names = ["susceptible", "exposed", "infected", "recovered", "deceased"]

    for i in range(5):
        print(names[i] + ": ", dl.assemble(10000 * u[i] * dl.dx))
    if save_numpy:
        for i in range(5):
            np.save(save_path + names[i] + '_ic.npy',
                    u[i].vector().get_local())
    if save_vtu:
        for i in range(5):
            file = dl.File(save_path + names[i] + '_ic.pvd', "compressed")
            file << u[i]
Exemple #11
0
        elif df.near(x[1], 1.):
            assert np.linalg.norm(n(x) - np.array([0, 1, 0])) < 1E-10
        elif df.near(x[2], 0):
            assert np.linalg.norm(n(x) - np.array([0, 0, -1])) < 1E-10
        else:
            assert np.linalg.norm(n(x) - np.array([0, 0, 1])) < 1E-10

    # EmbeddedMesh with cell_f
    mesh = df.BoxMesh(df.Point(*(-1, ) * 3), df.Point(*(1, ) * 3), 10, 10, 10)
    cell_f = df.MeshFunction('size_t', mesh, mesh.topology().dim(), 0)
    for cell in df.cells(mesh):
        x, y, z = cell.midpoint().array()
        if x > 0:
            cell_f[cell] = 1 if y > 0 else 2
        else:
            cell_f[cell] = 3 if y > 0 else 4

    df.File('t.pvd') << cell_f

    mesh = EmbeddedMesh(cell_f, (1, 3))
    df.File('bar.pvd') << mesh
    df.File('foo.pvd') << mesh.marking_function

    for cell in df.SubsetIterator(mesh.marking_function, 1):
        x, y, z = cell.midpoint().array()
        assert x > 0 and y > 0

    for cell in df.SubsetIterator(mesh.marking_function, 3):
        x, y, z = cell.midpoint().array()
        assert x < 0 and y > 0
Exemple #12
0
        plt.yscale('log')
        plt.show()
    

    compute_trace = True
    if compute_trace:
        post_tr, prior_tr, corr_tr = posterior.trace(method="Estimator", tol=1e-2, min_iter=20, max_iter=20)
        print( "Posterior trace {0:5e}; Prior trace {1:5e}; Correction trace {2:5e}".format(post_tr, prior_tr, corr_tr) )
    post_pw_variance, pr_pw_variance, corr_pw_variance = posterior.pointwise_variance(method="Exact")

    objs = [dl.Function(Vh[PARAMETER], pr_pw_variance), dl.Function(Vh[PARAMETER], post_pw_variance)]
    mytitles = ["Prior variance", "Posterior variance"]
    nb.multi1_plot(objs, mytitles, logscale=False)
    plt.show()

    fid = dl.File("results/pointwise_variance.pvd")
    fid << dl.Function(Vh[PARAMETER], post_pw_variance, name="Posterior")
    fid << dl.Function(Vh[PARAMETER], pr_pw_variance, name="Prior")
    fid << dl.Function(Vh[PARAMETER], corr_pw_variance, name="Correction")
    
    #plt.figure()
    #plt.plot(range(0,k), d, 'ob')
    #plt.yscale('log')
    #plt.title("Spectrum of data misfit Hessian")

    print(sep, "Generate samples from Prior and Posterior\n","Export generalized Eigenpairs", sep)
    fid_prior = dl.File("samples/sample_prior.pvd")
    fid_post  = dl.File("samples/sample_post.pvd")
    nsamples = 8
    noise = dl.Vector()
    posterior.init_vector(noise,"noise")
Exemple #13
0
    def solve_nonlinear(self, inputs, outputs):
        pde_problem = self.options['pde_problem']
        state_name = self.options['state_name']
        problem_type = self.options['problem_type']
        visualization = self.options['visualization']
        state_function = pde_problem.states_dict[state_name]['function']
        for argument_name, argument_function in iteritems(
                self.argument_functions_dict):
            density_func = argument_function
        mesh = state_function.function_space().mesh()
        sub_domains = df.MeshFunction('size_t', mesh,
                                      mesh.topology().dim() - 1)
        upper_edge = TractionBoundary()
        upper_edge.mark(sub_domains, 6)
        dss = df.Measure('ds')(subdomain_data=sub_domains)
        tractionBC = dss(6)

        self.itr = self.itr + 1

        state_function = pde_problem.states_dict[state_name]['function']
        residual_form = get_residual_form(
            state_function,
            df.TestFunction(state_function.function_space()),
            density_func,
            density_func.function_space(),
            tractionBC,
            # df.Constant((0.0, -9.e-1))
            df.Constant((0.0, -9.e-1)),
            int(self.itr))

        self._set_values(inputs, outputs)

        self.derivative_form = df.derivative(residual_form, state_function)
        df.set_log_level(df.LogLevel.ERROR)
        df.set_log_active(True)
        # df.solve(residual_form==0, state_function, bcs=pde_problem.bcs_list, J=self.derivative_form)
        if problem_type == 'linear_problem':
            df.solve(residual_form == 0,
                     state_function,
                     bcs=pde_problem.bcs_list,
                     J=self.derivative_form,
                     solver_parameters={
                         "newton_solver": {
                             "maximum_iterations": 60,
                             "error_on_nonconvergence": False
                         }
                     })
        elif problem_type == 'nonlinear_problem':
            problem = df.NonlinearVariationalProblem(residual_form,
                                                     state_function,
                                                     pde_problem.bcs_list,
                                                     self.derivative_form)
            solver = df.NonlinearVariationalSolver(problem)
            solver.parameters['nonlinear_solver'] = 'snes'
            solver.parameters["snes_solver"]["line_search"] = 'bt'
            solver.parameters["snes_solver"][
                "linear_solver"] = 'mumps'  # "cg" "gmres"
            solver.parameters["snes_solver"]["maximum_iterations"] = 500
            solver.parameters["snes_solver"]["relative_tolerance"] = 5e-13
            solver.parameters["snes_solver"]["absolute_tolerance"] = 5e-13

            # solver.parameters["snes_solver"]["linear_solver_"]["maximum_iterations"]=1000
            solver.parameters["snes_solver"]["error_on_nonconvergence"] = False
            solver.solve()

        elif problem_type == 'nonlinear_problem_load_stepping':
            num_steps = 3
            state_function.vector().set_local(
                np.zeros((state_function.function_space().dim())))
            for i in range(num_steps):
                v = df.TestFunction(state_function.function_space())
                if i < (num_steps - 1):
                    residual_form = get_residual_form(
                        state_function,
                        v,
                        density_func,
                        density_func.function_space(),
                        tractionBC,
                        # df.Constant((0.0, -9.e-1))
                        df.Constant((0.0, -9.e-1 / num_steps * (i + 1))),
                        int(self.itr))
                else:
                    residual_form = get_residual_form(
                        state_function,
                        v,
                        density_func,
                        density_func.function_space(),
                        tractionBC,
                        # df.Constant((0.0, -9.e-1))
                        df.Constant((0.0, -9.e-1 / num_steps * (i + 1))),
                        int(self.itr))
                problem = df.NonlinearVariationalProblem(
                    residual_form, state_function, pde_problem.bcs_list,
                    self.derivative_form)
                solver = df.NonlinearVariationalSolver(problem)
                solver.parameters['nonlinear_solver'] = 'snes'
                solver.parameters["snes_solver"]["line_search"] = 'bt'
                solver.parameters["snes_solver"][
                    "linear_solver"] = 'mumps'  # "cg" "gmres"
                solver.parameters["snes_solver"]["maximum_iterations"] = 500
                solver.parameters["snes_solver"]["relative_tolerance"] = 1e-15
                solver.parameters["snes_solver"]["absolute_tolerance"] = 1e-15

                # solver.parameters["snes_solver"]["linear_solver_"]["maximum_iterations"]=1000
                solver.parameters["snes_solver"][
                    "error_on_nonconvergence"] = False
                solver.solve()

        # option to store the visualization results
        if visualization == 'True':
            for argument_name, argument_function in iteritems(
                    self.argument_functions_dict):
                df.File('solutions_iterations_3d/{}_{}.pvd'.format(
                    argument_name, self.itr)) << argument_function

        self.L = -residual_form
        self.itr = self.itr + 1
        outputs[state_name] = state_function.vector().get_local()
Exemple #14
0
        # inverse_solver.assign_model_parameters(m0)
        # inverse_solver.solve_inverse_problem()

    if T_msr.perturb or u_msr.perturb:
        T_msr.perturb = u_msr.perturb = 0.0
        inverse_solver.assign_model_parameters(model_parameters_forall)
        inverse_solver.solve_inverse_problem()

    if PLOT_RESULTS or SAVE_RESULTS:

        fig_handle_and_name_pairs = plot_everything()
        fig_handles = [f[0] for f in fig_handle_and_name_pairs]
        fig_names = [f[1] for f in fig_handle_and_name_pairs]

        if SAVE_RESULTS:

            if not os.path.isdir(RESULTS_DIR):
                os.makedirs(RESULTS_DIR)

            for handle_i, name_i in zip(fig_handles, fig_names):
                handle_i.savefig(os.path.join(RESULTS_DIR, name_i) + '.png')
                handle_i.savefig(os.path.join(RESULTS_DIR, name_i) + '.pdf')

            if not PLOT_RESULTS:
                plt.close('all')

            outfile = dolfin.File(os.path.join(RESULTS_DIR, 'pvd', 'u.pvd'))
            for t in inverse_solver.observation_times:
                outfile << inverse_solver.observe_u(t, copy=False)
"""
import mshr
import dolfin
from vtkplotter.dolfin import datadir, plot

fname = "shuttle.stl"

surface = mshr.Surface3D(datadir + fname)

# add a cylinder
cyl = mshr.Cylinder(dolfin.Point(-1.4, 0, 0), dolfin.Point(-1.0, 0, 0), 0.5,
                    0.7)
totdomain = surface + cyl

polyhedral_domain = mshr.CSGCGALDomain3D(totdomain)
dolfin.info(polyhedral_domain, True)

generator = mshr.CSGCGALMeshGenerator3D()

#### Try automatic
generator.parameters["mesh_resolution"] = 35.0
mesh = generator.generate(polyhedral_domain)

xmlname = fname.split(".")[0] + ".xml"
dolfin.File(xmlname) << mesh
print(mesh, "saved to " + xmlname)

##################################
plot(mesh, text=__doc__)
##################################
Exemple #16
0
# Write mesh as xml file
numVertices = p.shape[0]
numCells    = t.shape[0]

editor = df.MeshEditor()
mesh   = df.Mesh()

dim = 2

editor.open(mesh, 2, 2)            # top. and geom. dimension are both 3
editor.init_vertices(numVertices)  # number of vertices
editor.init_cells(numCells)        # number of cells

for x in range(0, numVertices):
	editor.add_vertex(x, p[x][:])

for x in range(0, numCells):
	editor.add_cell(x, np.array(t[x][:], dtype=np.uintp))

editor.close()

#Plot mesh using dolfin
df.plot(mesh)
df.interactive()

#Write to file
df.File('twovortexmesh.xml') << mesh



Exemple #17
0
#
# hIPPYlib is free software; you can redistribute it and/or modify it under the
# terms of the GNU General Public License (as published by the Free
# Software Foundation) version 2.0 dated June 1991.

import dolfin as dl
import sys
sys.path.append("../../")
from hippylib import *
import numpy as np

nx = 32
ny = 32
mesh = dl.UnitSquareMesh(nx, ny)
Vh = dl.FunctionSpace(mesh, 'Lagrange', 1)
Prior = LaplacianPrior(Vh, 1., 100.)

nsamples = 1000

s = dl.Function(Vh, name="sample")
noise = dl.Vector()
Prior.init_vector(noise, "noise")
size = len(noise.array())

fid = dl.File("results_cg/samples.pvd")

for i in range(0, nsamples):
    noise.set_local(np.random.randn(size))
    Prior.sample(noise, s.vector())
    fid << s
Exemple #18
0
    posterior.mean = x[PARAMETER]

    post_tr, prior_tr, corr_tr = posterior.trace(method="Randomized", r=200)
    if rank == 0:
        print(
            "Posterior trace {0:5e}; Prior trace {1:5e}; Correction trace {2:5e}"
            .format(post_tr, prior_tr, corr_tr))

    post_pw_variance, pr_pw_variance, corr_pw_variance = posterior.pointwise_variance(
        method="Randomized", r=200)

    kl_dist = posterior.klDistanceFromPrior()
    if rank == 0:
        print("KL-Distance from prior: ", kl_dist)

    fid = dl.File("results/pointwise_variance.pvd")
    fid << vector2Function(post_pw_variance, Vh[PARAMETER], name="Posterior")
    fid << vector2Function(pr_pw_variance, Vh[PARAMETER], name="Prior")
    fid << vector2Function(corr_pw_variance, Vh[PARAMETER], name="Correction")

    if rank == 0:
        print(sep,
              "Save State, Parameter, Adjoint, and observation in paraview",
              sep)
    xxname = ["State", "Parameter", "Adjoint"]
    xx = [vector2Function(x[i], Vh[i], name=xxname[i]) for i in range(len(Vh))]
    dl.File("results/poisson_state.pvd") << xx[STATE]
    dl.File("results/poisson_state_true.pvd") << vector2Function(
        utrue, Vh[STATE], name=xxname[STATE])
    dl.File("results/poisson_parameter.pvd") << xx[PARAMETER]
    dl.File("results/poisson_parameter_true.pvd") << vector2Function(
def Cost(xp):
    comm = nMPI.COMM_WORLD
    mpi_rank = comm.Get_rank()

    x1, x2 = xp #The two variables (length and feed offset)

    rs = 8.0  # radiation boundary radius
    l = x1  # Patch length
    w = 4.5  # Patch width
    s1 = x2 * x1 / 2.0  # Feed offset
    h = 1.0   # Patch height
    t = 0.05   # Metal thickness
    lc = 1.0  # Coax length
    rc = 0.25 # Coax shield radius
    cc = 0.107 #Coax center conductor 50 ohm air diel
    eps = 1.0e-4
    tol = 1.0e-6
    eta = 377.0 # vacuum intrinsic wave impedance
    eps_c = 1.0 # dielectric permittivity

    k0 = 2.45 * 2.0 * np.pi / 30.0 # Frequency in GHz
    ls = 0.025 #Mesh density parameters for GMSH
    lm = 0.8
    lw = 0.06
    lp = 0.3

    # Run GMSH only on one MPI processor (process 0).
    # We use the GMSH Python interface to generate the geometry and mesh objects
    if mpi_rank == 0:
        print("x[0] = {0:<f}, x[1] = {1:<f} ".format(xp[0], xp[1]))
        print("length = {0:<f}, width = {1:<f}, feed offset = {2:<f}".format(l, w, s1))
        gmsh.initialize()
        gmsh.option.setNumber('General.Terminal', 1)
        gmsh.model.add("SimplePatchOpt")
# Radiation sphere
        gmsh.model.occ.addSphere(0.0, 0.0, 0.0, rs, 1)
        gmsh.model.occ.addBox(0.0, -rs, 0.0, rs, 2*rs, rs, 2)
        gmsh.model.occ.intersect([(3,1)],[(3,2)], 3, removeObject=True, removeTool=True)
# Patch
        gmsh.model.occ.addBox(0.0, -l/2, h, w/2, l, t, 4)
# coax center
        gmsh.model.occ.addCylinder(0.0, s1, -lc, 0.0, 0.0, lc+h, cc, 5, 2.0*np.pi)

# coax shield
        gmsh.model.occ.addCylinder(0.0, s1, -lc, 0.0, 0.0, lc, rc, 7)
        gmsh.model.occ.addBox(0.0, s1-rc, -lc, rc, 2.0*rc, lc, 8)
        gmsh.model.occ.intersect([(3,7)], [(3,8)], 9, removeObject=True, removeTool=True)
        gmsh.model.occ.fuse([(3,3)], [(3,9)], 10, removeObject=True, removeTool=True)
# cutout internal boundaries
        gmsh.model.occ.cut([(3,10)], [(3,4),(3,5)], 11, removeObject=True, removeTool=True)

        gmsh.option.setNumber('Mesh.MeshSizeMin', ls)
        gmsh.option.setNumber('Mesh.MeshSizeMax', lm)
        gmsh.option.setNumber('Mesh.Algorithm', 6)
        gmsh.option.setNumber('Mesh.Algorithm3D', 1)
        gmsh.option.setNumber('Mesh.MshFileVersion', 4.1)
        gmsh.option.setNumber('Mesh.Format', 1)
        gmsh.option.setNumber('Mesh.MinimumCirclePoints', 36)
        gmsh.option.setNumber('Mesh.CharacteristicLengthFromCurvature', 1)

        gmsh.model.occ.synchronize()

        pts = gmsh.model.getEntities(0)
        gmsh.model.mesh.setSize(pts, lm) #Set background mesh density
        pts = gmsh.model.getEntitiesInBoundingBox(-eps, -l/2-eps, h-eps, w/2+eps, l/2+eps, h+t+eps)
        gmsh.model.mesh.setSize(pts, ls)

        pts = gmsh.model.getEntitiesInBoundingBox(-eps, s1-rc-eps, -lc-eps, rc+eps, s1+rc+eps, h+eps)
        gmsh.model.mesh.setSize(pts, lw)
        pts = gmsh.model.getEntitiesInBoundingBox(-eps, -rc-eps, -eps, rc+eps, rc+eps, eps)
        gmsh.model.mesh.setSize(pts, lw)

# Embed points to reduce mesh density on patch faces
        fce1 = gmsh.model.getEntitiesInBoundingBox(-eps, -l/2-eps, h+t-eps, w/2+eps, l/2+eps, h+t+eps, 2)
        gmsh.model.occ.synchronize()
        gmsh.model.geo.addPoint(w/4, -l/4, h+t, lp, 1000)
        gmsh.model.geo.addPoint(w/4, 0.0, h+t, lp, 1001)
        gmsh.model.geo.addPoint(w/4, l/4, h+t, lp, 1002)
        gmsh.model.geo.synchronize()
        gmsh.model.occ.synchronize()
        print(fce1)
        fce2 = gmsh.model.getEntitiesInBoundingBox(-eps, -l/2-eps, h-eps, w/2+eps, l/2+eps, h+eps, 2)
        gmsh.model.geo.addPoint(w/4, -9*l/32, h, lp, 1003)
        gmsh.model.geo.addPoint(w/4, 0.0, h, lp, 1004)
        gmsh.model.geo.addPoint(w/4, 9*l/32, h, lp, 1005)
        gmsh.model.geo.synchronize()
        for tt in fce1:
           gmsh.model.mesh.embed(0, [1000, 1001, 1002], 2, tt[1])
        for tt in fce2:
           gmsh.model.mesh.embed(0, [1003, 1004, 1005], 2, tt[1])
        print(fce2)
        gmsh.model.occ.remove(fce1)
        gmsh.model.occ.remove(fce2)
        gmsh.model.occ.synchronize()
        gmsh.model.addPhysicalGroup(3, [11], 1)
        gmsh.model.setPhysicalName(3, 1, "Air")
        gmsh.model.mesh.optimize("Relocate3D", niter=5)
        gmsh.model.mesh.generate(3)
        gmsh.write("SimplePatch.msh")
        gmsh.finalize()
# Mesh generation is finished.  We now use Meshio to translate GMSH mesh to xdmf file for 
# importation into Fenics FE solver
        msh = meshio.read("SimplePatch.msh")
        for cell in msh.cells:
            if  cell.type == "tetra":
                tetra_cells = cell.data

        for key in msh.cell_data_dict["gmsh:physical"].keys():
            if key == "tetra":
                tetra_data = msh.cell_data_dict["gmsh:physical"][key]

        tetra_mesh = meshio.Mesh(points=msh.points, cells={"tetra": tetra_cells},
                           cell_data={"VolumeRegions":[tetra_data]})

        meshio.write("mesh.xdmf", tetra_mesh)
# Here we import the mesh into Fenics
    mesh = dolfin.Mesh()
    with dolfin.XDMFFile("mesh.xdmf") as infile:
        infile.read(mesh)
    mvc = dolfin.MeshValueCollection("size_t", mesh, 3)
    with dolfin.XDMFFile("mesh.xdmf") as infile:
        infile.read(mvc, "VolumeRegions")
    cf = dolfin.cpp.mesh.MeshFunctionSizet(mesh, mvc)
# The boundary classes for the FE solver
    class PEC(dolfin.SubDomain):
        def inside(self, x, on_boundary):
            return on_boundary

    class InputBC(dolfin.SubDomain):
        def inside(self, x, on_boundary):
            return on_boundary and dolfin.near(x[2], -lc, tol)

    class OutputBC(dolfin.SubDomain):
        def inside(self, x, on_boundary):
            rr = np.sqrt(x[0]*x[0]+x[1]*x[1]+x[2]*x[2])
            return on_boundary and dolfin.near(rr, 8.0, 1.0e-1)

    class PMC(dolfin.SubDomain):
        def inside(self, x, on_boundary):
            return on_boundary and dolfin.near(x[0], 0.0, tol)


# Volume domains
    dolfin.File("VolSubDomains.pvd").write(cf)
    dolfin.File("Mesh.pvd").write(mesh)
# Mark boundaries
    sub_domains = dolfin.MeshFunction("size_t", mesh, mesh.topology().dim() - 1)
    sub_domains.set_all(4)
    pec = PEC()
    pec.mark(sub_domains, 0)
    in_port = InputBC()
    in_port.mark(sub_domains, 1)
    out_port = OutputBC()
    out_port.mark(sub_domains, 2)
    pmc = PMC()
    pmc.mark(sub_domains, 3)
    dolfin.File("BoxSubDomains.pvd").write(sub_domains)
# Set up function spaces
    cell = dolfin.tetrahedron
    ele_type = dolfin.FiniteElement('N1curl', cell, 2, variant="integral") # H(curl) element for EM
    V2 = dolfin.FunctionSpace(mesh, ele_type * ele_type)
    V = dolfin.FunctionSpace(mesh, ele_type)
    (u_r, u_i) = dolfin.TrialFunctions(V2)
    (v_r, v_i) = dolfin.TestFunctions(V2)
    dolfin.info(mesh)
#surface integral definitions from boundaries
    ds = dolfin.Measure('ds', domain = mesh, subdomain_data = sub_domains)
#volume regions
    dx_air = dolfin.Measure('dx', domain = mesh, subdomain_data = cf, subdomain_id = 1)
    dx_subst = dolfin.Measure('dx', domain = mesh, subdomain_data = cf, subdomain_id = 2)
# with source and sink terms
    u0 = dolfin.Constant((0.0, 0.0, 0.0)) #PEC definition
# The incident field sources (E and H-fields)
    h_src = dolfin.Expression(('-(x[1] - s) / (2.0 * pi * (pow(x[0], 2.0) + pow(x[1] - s,2.0)))', 'x[0] / (2.0 * pi *(pow(x[0],2.0) + pow(x[1] - s,2.0)))', 0.0), degree = 2,  s = s1)
    e_src = dolfin.Expression(('x[0] / (2.0 * pi * (pow(x[0], 2.0) + pow(x[1] - s,2.0)))', 'x[1] / (2.0 * pi *(pow(x[0],2.0) + pow(x[1] - s,2.0)))', 0.0), degree = 2, s = s1)
    Rrad = dolfin.Expression(('sqrt(x[0] * x[0] + x[1] * x[1] + x[2] * x[2])'), degree = 2)
#Boundary condition dictionary
    boundary_conditions = {0: {'PEC' : u0},
                       1: {'InputBC': (h_src)},
                       2: {'OutputBC': Rrad}}

    n = dolfin.FacetNormal(mesh)

#Build PEC boundary conditions for real and imaginary parts
    bcs = []
    for i in boundary_conditions:
        if 'PEC' in boundary_conditions[i]:
            bc = dolfin.DirichletBC(V2.sub(0), boundary_conditions[i]['PEC'], sub_domains, i)
            bcs.append(bc)
            bc = dolfin.DirichletBC(V2.sub(1), boundary_conditions[i]['PEC'], sub_domains, i)
            bcs.append(bc)

# Build input BC source term and loading term
    integral_source = []
    integrals_load =[]
    for i in boundary_conditions:
        if 'InputBC' in boundary_conditions[i]:
            r = boundary_conditions[i]['InputBC']
            bb1 = 2.0 * (k0 * eta) * dolfin.inner(v_i, dolfin.cross(n, r)) * ds(i) #Factor of two from field equivalence principle
            integral_source.append(bb1)
            bb2 = dolfin.inner(dolfin.cross(n, v_i), dolfin.cross(n, u_r)) * k0 * np.sqrt(eps_c) * ds(i)
            integrals_load.append(bb2)
            bb2 = dolfin.inner(-dolfin.cross(n, v_r), dolfin.cross(n, u_i)) * k0 * np.sqrt(eps_c) * ds(i)
            integrals_load.append(bb2)

    for i in boundary_conditions:
        if 'OutputBC' in boundary_conditions[i]:
           r = boundary_conditions[i]['OutputBC']
           bb2 = (dolfin.inner(dolfin.cross(n, v_i), dolfin.cross(n, u_r)) * k0 + 1.0 * dolfin.inner(dolfin.cross(n, v_i), dolfin.cross(n, u_i)) / r)* ds(i)
           integrals_load.append(bb2)
           bb2 = (dolfin.inner(-dolfin.cross(n, v_r), dolfin.cross(n, u_i)) * k0 + 1.0 * dolfin.inner(dolfin.cross(n, v_r), dolfin.cross(n, u_r)) / r)* ds(i)
           integrals_load.append(bb2)
# for PMC, do nothing. Natural BC.

    a = (dolfin.inner(dolfin.curl(v_r), dolfin.curl(u_r)) + dolfin.inner(dolfin.curl(v_i), dolfin.curl(u_i)) - eps_c * k0 * k0 * (dolfin.inner(v_r, u_r) + dolfin.inner(v_i, u_i))) * dx_subst + (dolfin.inner(dolfin.curl(v_r), dolfin.curl(u_r)) + dolfin.inner(dolfin.curl(v_i), dolfin.curl(u_i)) - k0 * k0 * (dolfin.inner(v_r, u_r) + dolfin.inner(v_i, u_i))) * dx_air + sum(integrals_load)
    L = sum(integral_source)

    u1 = dolfin.Function(V2)
    vdim = u1.vector().size()
    print("Solution vector size =", vdim)

    dolfin.solve(a == L, u1, bcs, solver_parameters = {'linear_solver' : 'mumps'}) 

#Here we write files of the field solution for inspection
    u1_r, u1_i = u1.split(True)
    fp = dolfin.File("EField_r.pvd")
    fp << u1_r
    fp = dolfin.File("EField_i.pvd")
    fp << u1_i
# Compute power relationships and reflection coefficient
    H = dolfin.interpolate(h_src, V) # Get input field
    P =  dolfin.assemble((-dolfin.dot(u1_r,dolfin.cross(dolfin.curl(u1_i),n))+dolfin.dot(u1_i,dolfin.cross(dolfin.curl(u1_r),n))) * ds(2))
    P_refl = dolfin.assemble((-dolfin.dot(u1_i,dolfin.cross(dolfin.curl(u1_r), n)) + dolfin.dot(u1_r, dolfin.cross(dolfin.curl(u1_i), n))) * ds(1))
    P_inc = dolfin.assemble((dolfin.dot(H, H) * eta / (2.0 * np.sqrt(eps_c))) * ds(1))
    print("Integrated power on port 2:", P/(2.0 * k0 * eta))
    print("Incident power at port 1:", P_inc)
    print("Integrated reflected power on port 1:", P_inc - P_refl / (2.0 * k0 * eta))
#Reflection coefficient is returned as cost function
    rho_old = (P_inc - P_refl / (2.0 * k0 * eta)) / P_inc #Fraction of incident power reflected as objective function
    return rho_old
Exemple #20
0
def _save_dolfin(data, FILE):
    dolfin.File(str(os.path.join(DIR, FILE))) << data
def traction_test(
    ell=0.1,
    degree=1,
    n=3,
    nu=0.0,
    E=1.,
    load_min=0,
    load_max=2,
    loads=None,
    nsteps=20,
    Lx=1,
    Ly=0.1,
    outdir="outdir",
    postfix='',
    savelag=1,
    sigma_D0=1.,
    continuation=False,
    checkstability=True,
    configString=''
):
    # constants
    ell = ell
    Lx = Lx
    Ly = Ly
    load_min = load_min
    load_max = load_max
    nsteps = nsteps
    outdir = outdir
    loads=loads

    savelag = 1
    nu = dolfin.Constant(nu)
    ell = dolfin.Constant(ell)
    E0 = dolfin.Constant(E)
    sigma_D0 = E0
    n = n
    continuation = continuation
    config = json.loads(configString) if configString != '' else ''

    cmd_parameters =  {
    'material': {
        "ell": ell.values()[0],
        "E": E0.values()[0],
        "nu": nu.values()[0],
        "sigma_D0": sigma_D0.values()[0]},
    'geometry': {
        'Lx': Lx,
        'Ly': Ly,
        'n': n,
        },
    'experiment': {
        'signature': ''
        },
    'stability': {
        'checkstability' : checkstability,
        'continuation' : continuation
        },
    'time_stepping': {
        'load_min': load_min,
        'load_max': load_max,
        'nsteps':  nsteps,
        'outdir': outdir,
        'postfix': postfix,
        'savelag': savelag},
    'alt_min': {}, "code": {}
    }

    if config:
        for par in config: parameters[par].update(config[par])
    else:
        for par in parameters: parameters[par].update(cmd_parameters[par])
    print(parameters)

    signature = hashlib.md5(str(parameters).encode('utf-8')).hexdigest()
    outdir += '-{}{}'.format(signature, cmd_parameters['time_stepping']['postfix'])
    # outdir += '-{}'.format(cmd_parameters['time_stepping']['postfix'])
    parameters['time_stepping']['outdir']=outdir
    Path(outdir).mkdir(parents=True, exist_ok=True)
    print('Outdir is: '+outdir)

    with open(os.path.join(outdir, 'rerun.sh'), 'w') as f:
        configuration = deepcopy(parameters)
        configuration['time_stepping'].pop('outdir')
        str(configuration).replace("\'True\'", "True").replace("\'False\'", "False")
        rerun_cmd = 'python3 {} --config="{}"'.format(__file__, configuration)
        f.write(rerun_cmd)

    with open(os.path.join(outdir, 'parameters.pkl'), 'w') as f:
        json.dump(parameters, f)

    with open(os.path.join(outdir, 'signature.md5'), 'w') as f:
        f.write(signature)


    geom = mshr.Rectangle(dolfin.Point(-Lx/2., -Ly/2.), dolfin.Point(Lx/2., Ly/2.))
    mesh = mshr.generate_mesh(geom,  int(float(n * Lx / ell)))
    meshf = dolfin.File(os.path.join(outdir, "mesh.xml"))
    meshf << mesh

    left = dolfin.CompiledSubDomain("near(x[0], -Lx/2.)", Lx=Lx)
    right = dolfin.CompiledSubDomain("near(x[0], Lx/2.)", Lx=Lx)
    bottom = dolfin.CompiledSubDomain("near(x[1],-Ly/2.)", Ly=Ly)
    top = dolfin.CompiledSubDomain("near(x[1],Ly/2.)", Ly=Ly)
    left_bottom_pt = dolfin.CompiledSubDomain("near(x[0],-Lx/2.) && near(x[1],-Ly/2.)", Lx=Lx, Ly=Ly)

    mf = dolfin.MeshFunction("size_t", mesh, 1, 0)
    right.mark(mf, 1)
    left.mark(mf, 2)
    bottom.mark(mf, 3)
    ds = dolfin.Measure("ds", subdomain_data=mf)
    dx = dolfin.Measure("dx", metadata=form_compiler_parameters, domain=mesh)

    # Function Spaces
    V_u = dolfin.VectorFunctionSpace(mesh, "CG", 1)
    V_alpha = dolfin.FunctionSpace(mesh, "CG", 1)
    u = dolfin.Function(V_u, name="Total displacement")
    alpha = dolfin.Function(V_alpha, name="Damage")
    state = [u, alpha]

    Z = dolfin.FunctionSpace(mesh, dolfin.MixedElement([u.ufl_element(),alpha.ufl_element()]))
    z = dolfin.Function(Z)

    v, beta = dolfin.split(z)

    # BCs (homogenous version needed for residual evaluation)
    ut = dolfin.Expression("t", t=0.0, degree=0)
    bcs_u = [dolfin.DirichletBC(V_u.sub(0), dolfin.Constant(0), left),
             dolfin.DirichletBC(V_u.sub(0), ut, right),
             dolfin.DirichletBC(V_u, (0, 0), left_bottom_pt, method="pointwise")]

    bcs_alpha = []

    # Files for output
    ColorPrint.print_warn('Outdir = {}'.format(outdir))
    file_out = dolfin.XDMFFile(os.path.join(outdir, "output.xdmf"))
    file_out.parameters["functions_share_mesh"] = True
    file_out.parameters["flush_output"] = True
    file_con = dolfin.XDMFFile(os.path.join(outdir, "cont.xdmf"))
    file_con.parameters["functions_share_mesh"] = True
    file_con.parameters["flush_output"] = True
    file_eig = dolfin.XDMFFile(os.path.join(outdir, "modes.xdmf"))
    file_eig.parameters["functions_share_mesh"] = True
    file_eig.parameters["flush_output"] = True
    file_postproc = dolfin.XDMFFile(os.path.join(outdir, "output_postproc.xdmf"))
    file_postproc.parameters["functions_share_mesh"] = True
    file_postproc.parameters["flush_output"] = True
    file_bif = dolfin.XDMFFile(os.path.join(outdir, "bifurcation_postproc.xdmf"))
    file_bif.parameters["functions_share_mesh"] = True
    file_bif.parameters["flush_output"] = True

    # Problem definition
    model = DamageElasticityModel(state, E0, nu, ell, sigma_D0)
    model.dx = dx
    model.ds = ds
    energy = model.total_energy_density(u, alpha)*model.dx

    # Alternate minimisation solver
    solver = solvers.AlternateMinimizationSolver(energy,
        [u, alpha], [bcs_u, bcs_alpha], parameters=parameters['alt_min'])

    rP = model.rP(u, alpha, v, beta)*model.dx
    rN = model.rN(u, alpha, beta)*model.dx

    stability = StabilitySolver(mesh, energy,
        [u, alpha], [bcs_u, bcs_alpha], z, rayleigh=[rP, rN], parameters = parameters['stability'])
    # stability = StabilitySolver(mesh, energy, [u, alpha], [bcs_u, bcs_alpha], z, parameters = parameters['stability'])

    # Time iterations
    load_steps = np.linspace(load_min, load_max, parameters['time_stepping']['nsteps'])

    if loads:
        load_steps = loads

    stability.parameters['checkstability'] = True

    time_data = []

    linesearch = LineSearch(energy, [u, alpha])
    alpha_old = dolfin.Function(alpha.function_space())
    lmbda_min_prev = 0.000001
    bifurcated = False
    bifurcation_loads = []
    save_current_bifurcation = False
    bifurc_i = 0
    alpha_bif = dolfin.Function(V_alpha)
    alpha_bif_old = dolfin.Function(V_alpha)
    for it, load in enumerate(load_steps):
        ut.t = load
        alpha_old.assign(alpha)

        ColorPrint.print_warn('Solving load t = {:.2f}'.format(load))

        # First order stability conditions
        (time_data_i, am_iter) = solver.solve()

        # Second order stability conditions
        (stable, negev) = stability.solve(solver.problem_alpha.lb)
        ColorPrint.print_pass('Current state is{}stable'.format(' ' if stable else ' un'))


        mineig = stability.mineig if hasattr(stability, 'mineig') else 0.0
        print('lmbda min', lmbda_min_prev)
        print('mineig', mineig)
        Deltav = (mineig-lmbda_min_prev) if hasattr(stability, 'eigs') else 0

        if (mineig + Deltav)*(lmbda_min_prev+dolfin.DOLFIN_EPS) < 0 and not bifurcated:
            bifurcated = True

            # save 3 bif modes
            print('About to bifurcate load ', load, 'step', it)
            bifurcation_loads.append(load)
            print('DEBUG: decide what to do')
            # save_current_bifurcation = True
            bifurc_i += 1

        lmbda_min_prev = mineig if hasattr(stability, 'mineig') else 0.


        if stable:
            solver.update()
        else:
            # Continuation
            iteration = 1
            while stable == False:
                # linesearch
                perturbation_v    = stability.perturbation_v
                perturbation_beta = stability.perturbation_beta

                h_opt, (hmin, hmax), energy_perturbations = linesearch.search(
                    [u, alpha, alpha_old],
                    perturbation_v, perturbation_beta)

                if h_opt != 0:
                    save_current_bifurcation = True
                    alpha_bif.assign(alpha)
                    alpha_bif_old.assign(alpha_old)
                    # admissible
                    uval = u.vector()[:]     + h_opt * perturbation_v.vector()[:]
                    aval = alpha.vector()[:] + h_opt * perturbation_beta.vector()[:]

                    u.vector()[:] = uval
                    alpha.vector()[:] = aval

                    u.vector().vec().ghostUpdate()
                    alpha.vector().vec().ghostUpdate()

                    # import pdb; pdb.set_trace()
                    (time_data_i, am_iter) = solver.solve()
                    (stable, negev) = stability.solve(alpha_old)
                    ColorPrint.print_pass('    Continuation iteration {}, current state is{}stable'.format(iteration, ' ' if stable else ' un'))
                    iteration += 1

                else:
                    # warn
                    ColorPrint.print_warn('Found zero increment, we are stuck in the matrix')
                    ColorPrint.print_warn('Continuing load program')
                    break

            solver.update()
            # stable == True    

        time_data_i["load"] = load
        time_data_i["stable"] = stable
        time_data_i["elastic_energy"] = dolfin.assemble(
            model.elastic_energy_density(model.eps(u), alpha)*dx)
        time_data_i["dissipated_energy"] = dolfin.assemble(
            model.damage_dissipation_density(alpha)*dx)
        time_data_i["eigs"] = stability.eigs if hasattr(stability, 'eigs') else np.inf
        time_data_i["stable"] = stability.stable
        time_data_i["# neg ev"] = stability.negev
        # import pdb; pdb.set_trace()

        _sigma = model.stress(model.eps(u), alpha)
        e1 = dolfin.Constant([1, 0])
        _snn = dolfin.dot(dolfin.dot(_sigma, e1), e1)
        time_data_i["sigma"] = 1/Ly * dolfin.assemble(_snn*model.ds(1))

        time_data_i["S(alpha)"] = dolfin.assemble(1./(model.a(alpha))*model.dx)
        time_data_i["A(alpha)"] = dolfin.assemble((model.a(alpha))*model.dx)
        time_data_i["avg_alpha"] = 1/dolfin.assemble(dolfin.project(Constant(1.), V_alpha)*model.dx) * dolfin.assemble(alpha*model.dx)

        ColorPrint.print_pass(
            "Time step {:.4g}: it {:3d}, err_alpha={:.4g}".format(
                time_data_i["load"],
                time_data_i["iterations"],
                time_data_i["alpha_error"]))

        time_data.append(time_data_i)
        time_data_pd = pd.DataFrame(time_data)

        if np.mod(it, savelag) == 0:
            with file_out as file:
                file.write(alpha, load)
                file.write(u, load)

            with file_postproc as file:
                file.write_checkpoint(alpha, "alpha-{}".format(it), 0, append = True)
                print('DEBUG: written step ', it)
                file.read_checkpoint(alpha, 'alpha-{}'.format(it), 0)
                print('DEBUG: read step {}, load {}'.format(it, load))
                print('DEBUG: file {}'.format(os.path.join(outdir, "output_postproc.xdmf")))
                # import pdb; pdb.set_trace()

        if save_current_bifurcation:
            # modes = np.where(stability.eigs < 0)[0]
            time_data_i['h_opt'] = h_opt
            time_data_i['max_h'] = hmax
            time_data_i['min_h'] = hmin

            with file_bif as file:
                # leneigs = len(modes)
                # maxmodes = min(3, leneigs)
                beta0v = dolfin.project(stability.perturbation_beta, V_alpha)
                print('DEBUG: irrev ', alpha.vector()-alpha_old.vector())
                file.write_checkpoint(beta0v, 'beta0', 0, append = True)
                file.write_checkpoint(alpha_bif_old, 'alpha-old', 0, append=True)
                file.write_checkpoint(alpha_bif, 'alpha-bif', 0, append=True)
                file.write_checkpoint(alpha, 'alpha', 0, append=True)

                np.save(os.path.join(outdir, 'energy_perturbations'), energy_perturbations, allow_pickle=True, fix_imports=True)

            with file_eig as file:
                _v = dolfin.project(dolfin.Constant(h_opt)*perturbation_v, V_u)
                _beta = dolfin.project(dolfin.Constant(h_opt)*perturbation_beta, V_alpha)
                _v.rename('perturbation displacement', 'perturbation displacement')
                _beta.rename('perturbation damage', 'perturbation damage')
                # import pdb; pdb.set_trace()
                file.write(_v, load)
                file.write(_beta, load)
                file.write_checkpoint(_v, 'perturbation_v', 0, append=True)
                file.write_checkpoint(_beta, 'perturbation_beta', 0, append=True)

            save_current_bifurcation = False


        # if np.mod(it, 10) == 0:
        #     alphatest = dolfin.Function(V_alpha)
        #     with dolfin.XDMFFile(os.path.join(outdir, "output_postproc.xdmf")) as f:
        #         f.read_checkpoint(alphatest, "alpha-{}".format(it), 0)
        #         print('DEBUG: read step ', it)

        time_data_pd.to_json(os.path.join(outdir, "time_data.json"))

    from post_processing import plot_global_data
    print(time_data_pd)
    print()
    print('Output in: '+outdir)


    # if size == 1:
    #     plt.figure()
    #     dolfin.plot(alpha)
    #     plt.savefig(os.path.join(outdir, "alpha.png"))
    #     plt.figure()
    #     dolfin.plot(u, mode="displacement")
    #     plt.savefig(os.path.join(outdir, "u.png"))
    #     plt.close('all')

    return time_data_pd
Exemple #22
0
                                                     max_iter=100)
        if rank == 0:
            print "Posterior trace {0:5g}; Prior trace {1:5g}; Correction trace {2:5g}".format(
                post_tr, prior_tr, corr_tr)
    post_pw_variance, pr_pw_variance, corr_pw_variance = posterior.pointwise_variance(
        "Exact")

    if rank == 0:
        print sep, "Save results", sep
    problem.exportState([u, a, p], "results/conc.pvd", "concentration")
    problem.exportState([utrue, true_initial_condition, p],
                        "results/true_conc.pvd", "concentration")
    problem.exportState([problem.ud, true_initial_condition, p],
                        "results/noisy_conc.pvd", "concentration")

    fid = dl.File("results/pointwise_variance.pvd")
    fid << vector2Function(post_pw_variance, Vh, name="Posterior")
    fid << vector2Function(pr_pw_variance, Vh, name="Prior")
    fid << vector2Function(corr_pw_variance, Vh, name="Correction")

    U.export(Vh, "hmisfit/evect.pvd", varname="gen_evect", normalize=True)
    if rank == 0:
        np.savetxt("hmisfit/eigevalues.dat", d)

    if rank == 0:
        print sep, "Generate samples from Prior and Posterior", sep
    fid_prior = dl.File("samples/sample_prior.pvd")
    fid_post = dl.File("samples/sample_post.pvd")
    nsamples = 50
    noise = dl.Vector()
    posterior.init_vector(noise, "noise")
Exemple #23
0
    def test_2_2D_cyl_laplace_solver(self):
        """Test a 2D Laplace equation in cylindrical coordinates.

           This is a Laplace solve as there is no source term, only
           boundary-conditions.

        """

        fncName = '(' + __file__ + ') ' + sys._getframe(
        ).f_code.co_name + '():\n'
        print('\ntest: ', fncName)

        ## Specialized modules for the mesh and field solver
        from UserMesh_y_Fields_FE2D_Module import UserMesh2DCirc_C
        from UserMesh_y_Fields_FE2D_Module import UserMeshInput2DCirc_C
        from UserMesh_y_Fields_FE2D_Module import UserPoissonSolve2DCirc_C

        # For this calculation, we use the Dolfin framework for finite-element fields.
        #        field_infrastructure_module = 'Dolfin_Module'
        #        fI_M = im_m.import_module(field_infrastructure_module)

        umi = UserMeshInput2DCirc_C()

        # Make the mesh
        # radial
        umi.rmin, umi.rmax = 1.0, 5.0  # Mesh goes from rmin to rmax in radius
        umi.nr = 10  # Number of divisions in r direction
        umi.stretch = 1.3  # Stretch parameter

        # Name the Dirichlet boundaries and assign integers to them.
        # These are the boundary-name -> int pairs used to mark mesh
        # facets:
        rminIndx = 1
        rmaxIndx = 2
        fieldBoundaryDict = {
            'rmin': rminIndx,
            'rmax': rmaxIndx,
        }

        umi.field_boundary_dict = fieldBoundaryDict

        # theta, starts at 0
        umi.tmax = math.pi / 2  # quarter-circle
        umi.nt = 20  # Number of divisions in theta direction

        # The diagonal that makes the triangular mesh
        # Options: 'left, 'right', 'left/right', 'crossed'
        umi.diagonal = 'crossed'

        mesh_M = UserMesh2DCirc_C(umi,
                                  compute_tree=False,
                                  plot_flag=self.plot_mesh)

        # Storage for the potential and electric field
        phiElementType = 'Lagrange'
        phiElementDegree = 1
        phiFieldType = 'scalar'

        phi_F = Field_C(mesh_M=mesh_M,
                        element_type=phiElementType,
                        element_degree=phiElementDegree,
                        field_type=phiFieldType)

        if phiElementDegree == 1:
            # For linear elements, grad(phi) is discontinuous across
            # elements. To get these values, we need Discontinuous Galerkin
            # elements.
            electricFieldElementType = "DG"
        else:
            electricFieldElementType = "Lagrange"

        negElectricField_F = Field_C(mesh_M=mesh_M,
                                     element_type=electricFieldElementType,
                                     element_degree=phiElementDegree - 1,
                                     field_type='vector')

        # The Laplace solver parameters

        linearSolver = 'lu'
        preconditioner = None
        # Don't get exactly the same solutions with the following
        #        linearSolver = 'cg'
        #        preconditioner = 'ilu'

        # Dirichlet Boundaries are marked with a boundary marker mesh
        # function
        fieldBoundaryMarker = mesh_M.field_boundary_marker

        # Boundary values of the potential.  These names have to be
        # the same as those assigned to the boundaries above.
        phiVals = {
            'rmin': 0.0,
            'rmax': -1.5,
        }

        phiBCs = dict((bnd, [fieldBoundaryDict[bnd], phiVals[bnd]])
                      for bnd in list(fieldBoundaryDict.keys()))

        computeEflag = True

        laplacesolve = UserPoissonSolve2DCirc_C(
            phi_F,
            linearSolver,
            preconditioner,
            fieldBoundaryMarker,
            phiBCs,
            neg_electric_field=negElectricField_F)

        laplacesolve.assemble_source_expression(0.0)

        plotTitle = os.path.basename(
            __file__) + ": " + sys._getframe().f_code.co_name
        laplacesolve.solve_for_phi(plot_flag=self.plot_results,
                                   plot_title=plotTitle)

        #        yesno = raw_input("Looks OK [Y/n]?")
        #        self.assertNotEqual(yesno, 'n', "Problem with mesh")

        # Write the potential to a file in VTK and XML formats
        file = df_m.File("phi_test_2_2D.pvd")
        phi_F.function.rename("phi2D", "phi_label")
        file << phi_F.function
        file = df_m.File("phi_test_2_2D.xml")
        file << phi_F.function

        # Write -E to a file in VTK and XML formats
        if negElectricField_F is not None:
            negElectricField_F.function.rename("E2D", "E_label")
            file = df_m.File("negE_test_2_2D.pvd")
            file << negElectricField_F.function
            file = df_m.File("negE_test_2_2D.xml")
            file << negElectricField_F.function

        # Try XDMF format
        xf = df_m.XDMFFile("phi_test_2_2D.xdmf")
        xf.write(phi_F.function)

        return
Exemple #24
0
    double R = sqrt(pow(x[0],2)+pow(x[1],2));
    double phi = atan2(x[1],x[0]);

    double d_0 = C_9 + C_2*cyl_bessel_k(0, R*lambda_2/tau) + C_8*cyl_bessel_i(0, R*lambda_2/tau);
    double d = - (10*A_1 * pow(R,2))/(27*tau) + (4*C_4*R)/(tau) - (2*C_5*tau)/R + C_14*cyl_bessel_k(1, R*lambda_2/tau) + C_15* cyl_bessel_i(1, R*lambda_2/tau);

    values[0] = d_0 + cos(phi) * d;
  }

    // The data stored in mesh functions
  double R;

};

PYBIND11_MODULE(SIGNATURE, m)
{
  py::class_<Pressure, std::shared_ptr<Pressure>, dolfin::Expression>
    (m, "Pressure")
  .def(py::init<>());
}
"""

c = df.CompiledExpression(df.compile_cpp_code(p_code).Pressure(), degree=1)
print(2 * c([1, 1]))

p_i = df.interpolate(c, V)
df.plot(p_i)

file = df.File("out.pvd")
file.write(p_i)
Exemple #25
0
    def test_1_1D_spherical_laplace_solver(self):
        """Test a 1D Laplace equation in spherical coordinates.

           This is a Laplace solve as there is no source term, only
           boundary-conditions.

           NB: The potential is represented with quadratic elements are used instead
           of the usual linear ones.
        """

        fncName = '(' + __file__ + ') ' + sys._getframe(
        ).f_code.co_name + '():\n'
        print('\ntest: ', fncName)

        ## Specialized modules for the mesh and field solver
        from UserMesh_y_Fields_Spherical1D_Module import UserMeshInput1DS_C
        from UserMesh_y_Fields_Spherical1D_Module import UserMesh1DS_C
        from UserMesh_y_Fields_Spherical1D_Module import UserPoissonSolve1DS_C

        # For this calculation, we use the Dolfin framework for finite-element fields.
        #        field_infrastructure_module = 'Dolfin_Module'
        #        fI_M = im_m.import_module(field_infrastructure_module)

        umi = UserMeshInput1DS_C()

        ## Make the mesh

        # radial
        umi.rmin, umi.rmax = 1.0, 5.0  # Mesh goes from rmin to rmax in radius
        umi.nr = 10  # Number of divisions in r direction
        umi.stretch = 1.3  # Stretch parameter

        # Name the Dirichlet boundaries and assign integers to them.
        # These are the boundary-name -> int pairs used to mark mesh
        # facets:
        rminIndx = 1
        rmaxIndx = 2
        fieldBoundaryDict = {
            'rmin': rminIndx,
            'rmax': rmaxIndx,
        }

        umi.field_boundary_dict = fieldBoundaryDict

        plotTitle = os.path.basename(
            __file__) + ": " + sys._getframe().f_code.co_name
        mesh_M = UserMesh1DS_C(umi,
                               compute_tree=False,
                               plot_flag=self.plot_mesh,
                               plot_title=plotTitle)
        #        yesno = raw_input("Just called UserMesh1DS_C() in test_1_1D_spherical_laplace_solver")

        ## Storage for the potential and electric field

        phiElementType = 'Lagrange'
        phiElementDegree = 2
        phiFieldType = 'scalar'

        phi_F = Field_C(mesh_M=mesh_M,
                        element_type=phiElementType,
                        element_degree=phiElementDegree,
                        field_type=phiFieldType)

        if phiElementDegree == 1:
            # For linear elements, grad(phi_F) is discontinuous across
            # elements. To represent this field, we need Discontinuous Galerkin
            # elements.
            electricFieldElementType = 'DG'
        else:
            electricFieldElementType = 'Lagrange'

        negElectricField_F = Field_C(mesh_M=mesh_M,
                                     element_type=electricFieldElementType,
                                     element_degree=phiElementDegree - 1,
                                     field_type='vector')

        ## The Laplace solver parameters
        # Gives PETSc LU solver, (null). (Direct solver).
        linearSolver = 'lu'
        preconditioner = None

        # Dirichlet boundaries are marked with a boundary marker mesh function
        fieldBoundaryMarker = mesh_M.field_boundary_marker

        # Boundary values of the potential
        phiVals = {
            'rmin': 0.0,
            'rmax': -1.5,
        }

        phiBCs = dict((bnd, [fieldBoundaryDict[bnd], phiVals[bnd]])
                      for bnd in list(fieldBoundaryDict.keys()))

        # Compute the electrostatic field from phi
        laplacesolve = UserPoissonSolve1DS_C(
            phi_F,
            linearSolver,
            preconditioner,
            fieldBoundaryMarker,
            phiBCs,
            neg_electric_field=negElectricField_F)

        # Set the source term: it's zero for Laplace's equation.
        # This sets the b vector
        laplacesolve.assemble_source_expression(0.0)

        # Solve for the potential
        plotTitle = os.path.basename(
            __file__) + ": " + sys._getframe().f_code.co_name
        laplacesolve.solve_for_phi(plot_flag=self.plot_results,
                                   plot_title=plotTitle)

        #        yesno = raw_input("Looks OK [Y/n]?")
        #        self.assertNotEqual(yesno, 'n', "Problem with mesh")

        #        potentialFieldOutputFile = ctrl.title + "-phi" + ".xdmf"
        #        potentialFieldOutputObj = df_m.XDMFFile(potentialFieldOutputFile)

        # Write the potential to a file in VTK and XML formats
        file = df_m.File('phi_test_1_1D.pvd')
        # phi_name goes into the output file; phi_label doesn't
        phi_F.function.rename("phi1D", "phi_label")
        file << phi_F.function
        file = df_m.File('phi_test_1_1D.xml')
        file << phi_F.function

        # Write the potential in XDMF format
        xf = df_m.XDMFFile("phi_test_1_1D.xdmf")
        xf.write(phi_F.function)

        # Write -E to a file in VTK and XML formats
        # !!! VTK cannot write a vector field on a 1D grid.
        # file = df_m.File('negE_test_1_1D.pvd')
        # file << fieldsolveCI.negE
        file = df_m.File('negE_test_1_1D.xml')
        file << negElectricField_F.function

        # Write -E in XDMF format
        xf = df_m.XDMFFile("negE_test_1_1D.xdmf")
        xf.write(negElectricField_F.function)

        # Check the 1/r^2 fall-off in E:

        (Emin, Emax) = (negElectricField_F.function(umi.rmin),
                        negElectricField_F.function(umi.rmax))
        #        print "Emin, Emax =", Emin, Emax
        ratio = Emin * umi.rmin**2 / (Emax * umi.rmax**2)
        #        print "ratio:", ratio

        decimal_places = 1  # Note: can get 2 decimal places for degree-3 elements.
        self.assertAlmostEqual(ratio,
                               1.0,
                               places=decimal_places,
                               msg="Falloff in E is not 1/r^2 to %d decimals" %
                               decimal_places)

        r_arr = mesh_M.mesh.coordinates()[:, 0]
        phi_arr = phi_F.function.vector().get_local()
        nnodes = len(phi_arr)
        nvertices = len(r_arr)
        #        print "nnode =", nnodes
        #        print "nvertex =", nvertex
        #        print "r_arr =", r_arr
        #        print "phi_arr =", phi_arr

        # Compute E from a simple derivative, for linear elements
        if nnodes == nvertices:
            # Check the derivative: (nvertices*dim array, so need the ,0)

            # Set up temp arrays
            ncells = len(r_arr) - 1
            negEexp = np_m.zeros(ncells)
            dr = np_m.zeros(ncells)

            dr[0:ncells] = r_arr[1:ncells + 1] - r_arr[0:ncells]

            # Have to reverse phi_arr to get it in same order as r_arr
            phi_arr = phi_arr[::-1]

            # Compute dphi/dr
            negEexp[0:ncells] = (phi_arr[1:ncells + 1] -
                                 phi_arr[0:ncells]) / dr[0:ncells]
            #       print "negEexp =", negEexp

            negEget = laplacesolve.negE.vector().get_local()
            #        print "negEget =", fieldsolveCI.negE.vector().array()

            # Check that the derivative equals the stored negE
            for ic in range(ncells):
                self.assertAlmostEqual(
                    negEget[ic],
                    negEexp[ic],
                    msg="Expected and stored values of negE are not the same")

        return
Exemple #26
0
dolfin.solve(a == L2, u_sol2, bc)


# ### Dolfin plot

# In[65]:

dolfin.plot(u_sol1)
dolfin.interactive()


# ### Save VTK files

# In[66]:

dolfin.File('u_sol1.pvd') << u_sol1


# In[67]:

dolfin.File('u_sol2.pvd') << u_sol2


# In[68]:

f = dolfin.File('combined.pvd')
f << mesh
f << u_sol1
f << u_sol2

Exemple #27
0
llg.A =1.3e-11
llg.D = 4e-3

#llg.set_m((
 #       'MS * (2*x[0]/L - 1)',
  #      'sqrt(MS*MS - MS*MS*(2*x[0]/L - 1)*(2*x[0]/L - 1))',
   #     '0'), L=length, MS=llg.Ms)
llg.set_m((
        'MS',
        '0',
        '0'), MS=llg.Ms)
llg.setup(use_dmi=True,use_exchange=True)
llg.pins = []
print "point 0:",mesh.coordinates()[0]

print "Solving problem..."

ts = numpy.linspace(0, 1e-9, 50)
tol = 1e-4
file = df.File('s.pvd')
for i in range(len(ts)-1):
    print "step=%4d, time=%12.6g " % (i,ts[i]),
    #ys,infodict = odeint(llg.solve_for, llg.m, [ts[i],ts[i+1]], full_output=True,printmessg=True,rtol=tol,atol=tol)
    ys,infodict = odeint(llg.solve_for, llg.m, [ts[i],ts[i+1]], full_output=True,printmessg=False)
    print "NFE=%4d, NJE=%4d" % (infodict['nfe'],infodict['nje'])
    file << llg._m
    df.plot(llg._m)
df.interactive()
print "Done"
Exemple #28
0
def main(dt,
         tEnd,
         length=10.0,
         height=5.0,
         numElementsFilm=2.0,
         reGen=True,
         ratLame=5.0,
         ratFilmSub=100.0):
    #fileDir = ("results-dt-%.2f-tEnd-%.0f-L-%.1f-H-%.1f-ratioLame-%.0f-ratioFilm-%.0f" %
    #           (dt, tEnd, length, height, ratLame, ratFilmSub))
    fileDir = "results-1"
    # create geometry
    rectDomain = Geometry(length=length, height=height, filmHeight=0.05)
    rectDomain.read_mesh(numElementsFilm, reGen)
    # define periodic boundary conditions
    periodicBC = PeriodicBoundary(rectDomain)
    # specify physical parameters
    physParams = Physical_Params(lmbdaSub=ratLame, muSub=1.0, ratFilmSub=100.0)
    physParams.create_Lame(rectDomain)
    # create discrete function space
    element = create_vector_element(rectDomain, order=1)
    W = dl.FunctionSpace(rectDomain.mesh,
                         element,
                         constrained_domain=periodicBC)

    # define boundaries
    def left(x, on_boundary):
        return dl.near(x[0], 0.) and on_boundary

    def right(x, on_boundary):
        return dl.near(x[0], rectDomain.length) and on_boundary

    def bottom(x, on_boundary):
        return dl.near(x[1], 0.0) and on_boundary

    def top(x, on_boundary):
        return dl.near(x[1], rectDomain.height) and on_boundary

    def corner(x, on_boundary):
        return dl.near(x[0], 0.0) and dl.near(x[1], 0.0)

    # define fixed boundary
    bcs = [
        dl.DirichletBC(W.sub(0), dl.Constant(0), left),
        dl.DirichletBC(W.sub(0), dl.Constant(0), right),
        dl.DirichletBC(W.sub(1), dl.Constant(0), bottom),
        dl.DirichletBC(W.sub(0), dl.Constant(0), corner, method="pointwise")
    ]
    bcs = bcs[-2:]
    # the variable to solve for
    w = dl.Function(W, name="Variables at current step")
    # test and trial function
    dw = dl.TrialFunction(W)
    w_ = dl.TestFunction(W)
    # dealing with physics of growth
    growthFactor = create_growthFactor(rectDomain, filmGrowth=1, subGrowth=0)
    Fg = create_Fg(growthFactor, "uniaxial")
    # kinematics
    I = dl.Identity(2)
    F = I + dl.grad(w)
    Fe = F * dl.inv(Fg)
    # write the variational form from potential energy
    psi = cal_neoHookean(Fe, physParams)
    Energy = psi * dl.dx
    Residual = dl.derivative(Energy, w, w_)
    Jacobian = dl.derivative(Residual, w, dw)
    problem = BucklingProblem(w, Energy, Residual, Jacobian)
    wLowerBound, wUpperBound = create_bounds(wMin=[-0.5, -0.5],
                                             wMax=[0.5, 0.5],
                                             functionSpace=W,
                                             boundaryCondtions=bcs)
    # Create the PETScTAOSolver
    solver = dl.PETScTAOSolver()
    TAOSolverParameters = {
        "method": "tron",
        "maximum_iterations": 1000,
        "monitor_convergence": True
    }
    solver.parameters.update(TAOSolverParameters)
    #solver.parameters["report"] = False
    #solver.parameters["linear_solver"] = "umfpack"
    #solver.parameters["line_search"] = "gpcg"
    #solver.parameters["preconditioner"] = "ml_amg"

    growthRate = 0.1
    growthEnd = growthRate * tEnd
    gF = 0.0
    outDisp = dl.File(fileDir + "/displacement.pvd")
    outDisp << (w, 0.0)
    iCounter = 0
    wArray = w.compute_vertex_values()

    while gF <= growthEnd - tol:
        gF += growthRate * dt
        iCounter += 1
        growthFactor.gF = gF
        w.vector()[:] += 2e-04 * np.random.uniform(-1, 1,
                                                   w.vector().local_size())
        nIters, converged = solver.solve(problem, w.vector(),
                                         wLowerBound.vector(),
                                         wUpperBound.vector())
        wArray[:] = w.compute_vertex_values()
        np.save(fileDir + "/w-{}.npy".format(iCounter), wArray)
        print("--- growth = %.4f, niters = %d, dt = %.5f -----" %
              (1 + gF, nIters, dt))
        outDisp << (w, gF)
Exemple #29
0
        noise_array = noise.get_local()
    else:
        noise_array = None
    noise_array = comm.bcast(noise_array, root=0)
    noise.set_local(noise_array)

    mtrue = dl.Vector()
    prior.init_vector(mtrue, 0)
    prior.sample(noise, mtrue)

    if rank == 0:
        filename = 'data/particle_true.xdmf'
        particle_fun = dl.Function(Vh[PARAMETER], name='particle')
        particle_fun.vector().axpy(1.0, mtrue)
        if dlversion() <= (1, 6, 0):
            dl.File(mesh.mpi_comm(), filename) << particle_fun
        else:
            xf = dl.XDMFFile(mesh.mpi_comm(), filename)
            xf.write(particle_fun)

    utrue = pde.generate_state()
    x = [utrue, mtrue, None]
    pde.solveFwd(x[STATE], x, 1e-9)
    misfit.B.mult(x[STATE], misfit.d)
    rel_noise = 0.01
    MAX = misfit.d.norm("linf")
    noise_std_dev = rel_noise * MAX
    parRandom.normal_perturb(noise_std_dev, misfit.d)
    if rank == 0:
        d_array = misfit.d.get_local()
    else:
Exemple #30
0
    def setUp(self):

        self.plot_mesh = False
        self.plot_results = False
        self.plot_phase_space = False

        # Turn plots off if there's no display.
        if os.environ.get('DISPLAY') is None:
            self.plot_mesh = False
            self.plot_results = False

        fncName = '(' + __file__ + ') ' + sys._getframe(
        ).f_code.co_name + '():\n'

        # initializations for each test go here...

        self.ctrl = DTcontrol_C()

        self.ctrl.title = "test_ParticleTrajectory"
        self.ctrl.author = "tph"

        self.ctrl.dt = 1.0e-6
        self.ctrl.MAX_FACET_CROSS_COUNT = 100

        # Initialize time counters
        self.ctrl.timeloop_count = 0
        self.ctrl.time = 0.0

        # This gives a list of species to apply E to.
        # 'None' value means that the field is applied to ALL species
        self.ctrl.apply_solved_electric_field = None

        self.ctrl.write_trajectory_files = True

        ### Particle species input

        # Create an instance of the DTparticleInput class
        pin = ParticleInput_C()
        # Initialize particles
        pin.precision = numpy.float64
        pin.particle_integration_loop = 'loop-on-particles'
        pin.coordinate_system = 'cartesian_xy'
        pin.force_components = [
            'x',
            'y',
        ]
        pin.force_precision = numpy.float64
        pin.use_cpp_integrators = False

        # Define an electron species called 'trajelectrons'.
        speciesName = 'trajelectrons'
        charge = -1.0 * MyPlasmaUnits_C.elem_charge
        mass = 1.0 * MyPlasmaUnits_C.electron_mass
        dynamics = 'charged'
        trajelectrons_S = ParticleSpecies_C(speciesName, charge, mass,
                                            dynamics)

        # Define an electron species called 'test_electrons'.
        speciesName = 'test_electrons'
        charge = -1.0 * MyPlasmaUnits_C.elem_charge
        mass = 1.0 * MyPlasmaUnits_C.electron_mass
        dynamics = 'charged'
        test_electrons_S = ParticleSpecies_C(speciesName, charge, mass,
                                             dynamics)

        # Add the electrons to particle input
        pin.particle_species = (
            trajelectrons_S,
            test_electrons_S,
        )

        ## Make the particle storage array for all species.
        self.particle_P = Particle_C(pin, print_flag=True)

        ## Give the name of the .py file containing special particle data (lists of
        # particles, boundary conditions, source regions, etc.)
        userParticlesModuleName = "UserParticles_2D_e"

        # Import this module
        userParticlesModule = im_m.import_module(userParticlesModuleName)

        # self.particle_P.user_particles_module_name = userParticlesModuleName
        self.particle_P.user_particles_class = userParticlesClass = userParticlesModule.UserParticleDistributions_C

        ###  Mesh creation

        umi = UserMeshInput2DCirc_C()

        # Make the mesh & fields from saved files
        umi.mesh_file = 'mesh_quarter_circle_crossed.xml'
        umi.particle_boundary_file = 'mesh_quarter_circle_crossed_Pbcs.xml'

        ### Input for initial particles (i.e., particles present at t=0)

        # A. trajelectrons
        # Name the species (it should be in species_names above)
        speciesName = 'trajelectrons'

        # Check that this species has been defined above
        if speciesName in self.particle_P.species_names:
            charge = self.particle_P.charge[speciesName]
            mass = self.particle_P.mass[speciesName]
        else:
            print("The species", speciesName, "has not been defined")
            sys.exit()

        initialDistributionType = 'listed'
        # Check that there's a function listing the particles particles
        printFlag = True
        if hasattr(userParticlesClass, speciesName):
            if printFlag:
                print(fncName + "DnT INFO: Initial distribution for",
                      speciesName, "is the function of that name in",
                      userParticlesClass)
        # Write error message and exit if no distribution function exists
        else:
            errorMsg = fncName + "(DnT ERROR) Need to define a particle distribution function %s in UserParticle.py for species %s " % (
                speciesName, speciesName)
            sys.exit(errorMsg)

        # Collect the parameters into a dictionary
        # The 'listed' type will expect a function with the same name as the species.
        trajElectronParams = {
            'species_name': speciesName,
            'initial_distribution_type': initialDistributionType,
        }

        # B. test_electrons
        # Name the species (it should be in species_names above)
        speciesName = 'test_electrons'

        # Check that this species has been defined above
        if speciesName in self.particle_P.species_names:
            charge = self.particle_P.charge[speciesName]
            mass = self.particle_P.mass[speciesName]
        else:
            print("The species", speciesName, "has not been defined")
            sys.exit()

        initialDistributionType = 'listed'
        # Check that there's a function listing the particles particles
        printFlag = True
        if hasattr(userParticlesClass, speciesName):
            if printFlag:
                print(fncName + "DnT INFO: Initial distribution for",
                      speciesName, "is the function of that name in",
                      userParticlesClass)
        # Write error message and exit if no distribution function exists
        else:
            errorMsg = fncName + "(DnT ERROR) Need to define a particle distribution function %s in UserParticle.py for species %s " % (
                speciesName, speciesName)
            sys.exit(errorMsg)

        # Collect the parameters into a dictionary
        # The 'listed' type will expect a function with the same name as the species.
        test_electronParams = {
            'species_name': speciesName,
            'initial_distribution_type': initialDistributionType,
        }

        ## Collect the initial particles into a dictionary

        # The dictionary keys are mnemonics for the initialized particles
        initialParticlesDict = {
            'initial_trajelectrons': (trajElectronParams, ),
            'initial_test_electrons': (test_electronParams, ),
        }

        # Add the initialized particles to the Particle_C object
        self.particle_P.initial_particles_dict = initialParticlesDict

        # Create the particle mesh object
        # 'crossed' diagonals
        #        self.pmesh2D = Mesh_C(meshFile="quarter_circle_mesh_crossed.xml", computeDictionaries=True, computeTree=True, plotFlag=False)
        # 'left' diagonal
        #        self.pmesh2D = Mesh_C(meshFile="quarter_circle_mesh_left.xml", computeDictionaries=True, computeTree=True, plotFlag=False)

        # These are the boundary-name -> int pairs used to mark mesh facets:
        rminIndx = 1
        rmaxIndx = 2
        thminIndx = 4
        thmaxIndx = 8
        particleBoundaryDict = {
            'rmin': rminIndx,
            'rmax': rmaxIndx,
            'thmin': thminIndx,
            'thmax': thmaxIndx,
        }

        umi.particle_boundary_dict = particleBoundaryDict

        # Read the mesh from an existing file

        #        pin.pmesh_M = UserMesh_C(meshFile='quarter_circle_mesh_crossed.xml', particleBoundaryFile='Pbcs_quarter_circle_mesh_crossed.xml', computeDictionaries=True, computeTree=True, plotFlag=False)

        # Can this be attached to Particle_C after Particle_C construction? YES
        pmesh_M = UserMesh2DCirc_C(umi,
                                   compute_dictionaries=True,
                                   compute_cpp_arrays=False,
                                   compute_tree=True,
                                   plot_flag=self.plot_mesh)

        self.particle_P.pmesh_M = pmesh_M

        ### Field creation

        # The following value should correspond to the element degree
        # used in the potential from which negE was obtained
        phi_element_degree = 1

        if phi_element_degree == 1:
            # For linear elements, grad(phi) is discontinuous across
            # elements. To represent this field, we need Discontinuous Galerkin
            # elements.
            electric_field_element_type = "DG"
        else:
            electric_field_element_type = "Lagrange"

        ## Create the electric field from a file written by test_FieldSolve.py.

        # Put the negative electric field directly on the particle mesh
        self.neg_electric_field = Field_C(
            pmesh_M,
            element_type=electric_field_element_type,
            element_degree=phi_element_degree - 1,
            field_type='vector')

        file = df_m.File(
            "negE2D_crossed-2016.xml"
        )  # Use a frozen version instead of the one created each time test_FieldSolve.py runs.
        file >> self.neg_electric_field.function

        ## Particle boundary-conditions

        # UserParticleBoundaryFunctions_C is where the facet-crossing callback
        # functions are defined.
        #        userPBndFnsClass = userParticlesModule.UserParticleBoundaryFunctions_C # LHS is an abbreviation
        userPBndFns = userParticlesModule.UserParticleBoundaryFunctions_C(
            self.particle_P.position_coordinates, self.particle_P.dx)

        # Make the particle-mesh boundary-conditions object and add it
        # to the particle object.
        spNames = self.particle_P.species_names
        #        pmeshBCs = ParticleMeshBoundaryConditions_C(spNames, pmesh_M, userPBndFnsClass, print_flag=False)
        pmeshBCs = ParticleMeshBoundaryConditions_C(spNames,
                                                    pmesh_M,
                                                    userPBndFns,
                                                    print_flag=False)
        self.particle_P.pmesh_bcs = pmeshBCs

        ### Create input for a particle trajectory object

        # Use an input object to collect initialization data for the trajectory object
        self.trajin = TrajectoryInput_C()

        self.trajin.maxpoints = None  # Set to None to get every point
        self.trajin.extra_points = 10  # Set to 1 to make sure one boundary-crossing can be
        # accommodated. Set to a larger value if there are
        # multiple boundary reflections. 10 is needed for
        # all the the reflections in test_4.

        # Specify which particle variables to save.  This has the form of a numpy
        # dtype specification.

        name_list_base = ['step', 't']  # These are always recorded
        format_list_base = [int, numpy.float32
                            ]  # Start off the format list with types for
        # 'step' and 't'

        charged_attributes = ['x', 'ux', 'y', 'uy', 'crossings', 'Ex', 'Ey']
        format_list = format_list_base + [
            numpy.float32 for i in range(len(charged_attributes))
        ]
        self.trajin.charged_dict = {
            'names': name_list_base + charged_attributes,
            'formats': format_list
        }

        neutral_attributes = ['x', 'ux', 'y', 'uy']
        format_list = format_list_base + [
            numpy.float32 for i in range(len(neutral_attributes))
        ]
        self.trajin.neutral_dict = {
            'names': name_list_base + neutral_attributes,
            'formats': format_list
        }

        return