def run_with_params(Tb, mu_value, k_s, path): run_time_init = clock() mesh = BoxMesh(Point(0.0, 0.0, 0.0), Point(mesh_width, mesh_width, mesh_height), nx, ny, nz) pbc = PeriodicBoundary() WE = VectorElement('CG', mesh.ufl_cell(), 2) SE = FiniteElement('CG', mesh.ufl_cell(), 1) WSSS = FunctionSpace(mesh, MixedElement(WE, SE, SE, SE), constrained_domain=pbc) # W = FunctionSpace(mesh, WE, constrained_domain=pbc) # S = FunctionSpace(mesh, SE, constrained_domain=pbc) W = WSSS.sub(0).collapse() S = WSSS.sub(1).collapse() temperature_vals = [27.0 + 273, Tb + 273, 1300.0 + 273, 1305.0 + 273] temp_prof = TemperatureProfile(temperature_vals, element=S.ufl_element()) mu_a = mu_value # this was taken from the Blankenbach paper, can change Ep = b / temp_prof.delta mu_bot = exp(-Ep * (temp_prof.bottom * temp_prof.delta - 1573.0) + cc) * mu_a # TODO: verify exponentiation Ra = rho_0 * alpha * g * temp_prof.delta * h ** 3 / (kappa_0 * mu_a) w0 = rho_0 * alpha * g * temp_prof.delta * h ** 2 / mu_a tau = h / w0 p0 = mu_a * w0 / h log(mu_a, mu_bot, Ra, w0, p0) slip_vx = 1.6E-09 / w0 # Non-dimensional slip_velocity = Constant((slip_vx, 0.0, 0.0)) zero_slip = Constant((0.0, 0.0, 0.0)) time_step = 3.0E11 / tau * 2 dt = Constant(time_step) t_end = 3.0E15 / tau / 5.0 # Non-dimensional times u = Function(WSSS) # Instead of TrialFunctions, we use split(u) for our non-linear problem v, p, T, Tf = split(u) v_t, p_t, T_t, Tf_t = TestFunctions(WSSS) T0 = interpolate(temp_prof, S) mu_exp = Expression('exp(-Ep * (T_val * dTemp - 1573.0) + cc * x[2] / mesh_height)', Ep=Ep, dTemp=temp_prof.delta, cc=cc, mesh_height=mesh_height, T_val=T0, element=S.ufl_element()) Tf0 = interpolate(temp_prof, S) mu = Function(S) v0 = Function(W) v_theta = (1.0 - theta) * v0 + theta * v T_theta = (1.0 - theta) * T0 + theta * T Tf_theta = (1.0 - theta) * Tf0 + theta * Tf # TODO: Verify forms r_v = (inner(sym(grad(v_t)), 2.0 * mu * sym(grad(v))) - div(v_t) * p - T * v_t[2]) * dx r_p = p_t * div(v) * dx heat_transfer = Constant(k_s) * (Tf_theta - T_theta) * dt r_T = (T_t * ((T - T0) + dt * inner(v_theta, grad(T_theta))) # TODO: Inner vs dot + (dt / Ra) * inner(grad(T_t), grad(T_theta)) - T_t * heat_transfer) * dx v_melt = Function(W) z_hat = Constant((0.0, 0.0, 1.0)) # TODO: inner -> dot, take out Tf_t r_Tf = (Tf_t * ((Tf - Tf0) + dt * inner(v_melt, grad(Tf_theta))) + Tf_t * heat_transfer) * dx r = r_v + r_p + r_T + r_Tf bcv0 = DirichletBC(WSSS.sub(0), zero_slip, top) bcv1 = DirichletBC(WSSS.sub(0), slip_velocity, bottom) bcv2 = DirichletBC(WSSS.sub(0).sub(1), Constant(0.0), back) bcv3 = DirichletBC(WSSS.sub(0).sub(1), Constant(0.0), front) bcp0 = DirichletBC(WSSS.sub(1), Constant(0.0), bottom) bct0 = DirichletBC(WSSS.sub(2), Constant(temp_prof.surface), top) bct1 = DirichletBC(WSSS.sub(2), Constant(temp_prof.bottom), bottom) bctf1 = DirichletBC(WSSS.sub(3), Constant(temp_prof.bottom), bottom) bcs = [bcv0, bcv1, bcv2, bcv3, bcp0, bct0, bct1, bctf1] t = 0 count = 0 files = DefaultDictByKey(partial(create_xdmf, path)) while t < t_end: mu.interpolate(mu_exp) rhosolid = rho_0 * (1.0 - alpha * (T0 * temp_prof.delta - 1573.0)) deltarho = rhosolid - rho_melt # TODO: project (accuracy) vs interpolate assign(v_melt, project(v0 - darcy * (grad(p) * p0 / h - deltarho * z_hat * g) / w0, W)) # TODO: Written out one step later? # v_melt.assign(v0 - darcy * (grad(p) * p0 / h - deltarho * yvec * g) / w0) # TODO: use nP after to avoid projection? solve(r == 0, u, bcs) nV, nP, nT, nTf = u.split() # TODO: write with Tf, ... etc if count % output_every == 0: time_left(count, t_end / time_step, run_time_init) # TODO: timestep vs dt # TODO: Make sure all writes are to the same function for each time step files['T_fluid'].write(nTf, t) files['p'].write(nP, t) files['v_solid'].write(nV, t) files['T_solid'].write(nT, t) files['mu'].write(mu, t) files['v_melt'].write(v_melt, t) files['gradp'].write(project(grad(nP), W), t) files['rho'].write(project(rhosolid, S), t) files['Tf_grad'].write(project(grad(Tf), W), t) files['advect'].write(project(dt * dot(v_melt, grad(nTf))), t) files['ht'].write(project(heat_transfer, S), t) assign(T0, nT) assign(v0, nV) assign(Tf0, nTf) t += time_step count += 1 log('Case mu={}, Tb={}, k={} complete. Run time = {:.2f} minutes'.format(mu_a, Tb, k_s, (clock() - run_time_init) / 60.0))
def run_with_params(Tb, mu_value, k_s, path): run_time_init = clock() mesh = BoxMesh(Point(0.0, 0.0, 0.0), Point(mesh_width, mesh_width, mesh_height), nx, ny, nz) pbc = PeriodicBoundary() WE = VectorElement('CG', mesh.ufl_cell(), 2) SE = FiniteElement('CG', mesh.ufl_cell(), 1) WSSS = FunctionSpace(mesh, MixedElement(WE, SE, SE, SE), constrained_domain=pbc) # W = FunctionSpace(mesh, WE, constrained_domain=pbc) # S = FunctionSpace(mesh, SE, constrained_domain=pbc) W = WSSS.sub(0).collapse() S = WSSS.sub(1).collapse() temperature_vals = [27.0 + 273, Tb + 273, 1300.0 + 273, 1305.0 + 273] temp_prof = TemperatureProfile(temperature_vals, element=S.ufl_element()) mu_a = mu_value # this was taken from the Blankenbach paper, can change Ep = b / temp_prof.delta mu_bot = exp(-Ep * (temp_prof.bottom * temp_prof.delta - 1573.0) + cc) * mu_a # TODO: verify exponentiation Ra = rho_0 * alpha * g * temp_prof.delta * h**3 / (kappa_0 * mu_a) w0 = rho_0 * alpha * g * temp_prof.delta * h**2 / mu_a tau = h / w0 p0 = mu_a * w0 / h log(mu_a, mu_bot, Ra, w0, p0) slip_vx = 1.6E-09 / w0 # Non-dimensional slip_velocity = Constant((slip_vx, 0.0, 0.0)) zero_slip = Constant((0.0, 0.0, 0.0)) time_step = 3.0E11 / tau * 2 dt = Constant(time_step) t_end = 3.0E15 / tau / 5.0 # Non-dimensional times u = Function(WSSS) # Instead of TrialFunctions, we use split(u) for our non-linear problem v, p, T, Tf = split(u) v_t, p_t, T_t, Tf_t = TestFunctions(WSSS) T0 = interpolate(temp_prof, S) mu_exp = Expression( 'exp(-Ep * (T_val * dTemp - 1573.0) + cc * x[2] / mesh_height)', Ep=Ep, dTemp=temp_prof.delta, cc=cc, mesh_height=mesh_height, T_val=T0, element=S.ufl_element()) Tf0 = interpolate(temp_prof, S) mu = Function(S) v0 = Function(W) v_theta = (1.0 - theta) * v0 + theta * v T_theta = (1.0 - theta) * T0 + theta * T Tf_theta = (1.0 - theta) * Tf0 + theta * Tf # TODO: Verify forms r_v = (inner(sym(grad(v_t)), 2.0 * mu * sym(grad(v))) - div(v_t) * p - T * v_t[2]) * dx r_p = p_t * div(v) * dx heat_transfer = Constant(k_s) * (Tf_theta - T_theta) * dt r_T = ( T_t * ((T - T0) + dt * inner(v_theta, grad(T_theta))) # TODO: Inner vs dot + (dt / Ra) * inner(grad(T_t), grad(T_theta)) - T_t * heat_transfer) * dx v_melt = Function(W) z_hat = Constant((0.0, 0.0, 1.0)) # TODO: inner -> dot, take out Tf_t r_Tf = (Tf_t * ((Tf - Tf0) + dt * inner(v_melt, grad(Tf_theta))) + Tf_t * heat_transfer) * dx r = r_v + r_p + r_T + r_Tf bcv0 = DirichletBC(WSSS.sub(0), zero_slip, top) bcv1 = DirichletBC(WSSS.sub(0), slip_velocity, bottom) bcv2 = DirichletBC(WSSS.sub(0).sub(1), Constant(0.0), back) bcv3 = DirichletBC(WSSS.sub(0).sub(1), Constant(0.0), front) bcp0 = DirichletBC(WSSS.sub(1), Constant(0.0), bottom) bct0 = DirichletBC(WSSS.sub(2), Constant(temp_prof.surface), top) bct1 = DirichletBC(WSSS.sub(2), Constant(temp_prof.bottom), bottom) bctf1 = DirichletBC(WSSS.sub(3), Constant(temp_prof.bottom), bottom) bcs = [bcv0, bcv1, bcv2, bcv3, bcp0, bct0, bct1, bctf1] t = 0 count = 0 files = DefaultDictByKey(partial(create_xdmf, path)) while t < t_end: mu.interpolate(mu_exp) rhosolid = rho_0 * (1.0 - alpha * (T0 * temp_prof.delta - 1573.0)) deltarho = rhosolid - rho_melt # TODO: project (accuracy) vs interpolate assign( v_melt, project( v0 - darcy * (grad(p) * p0 / h - deltarho * z_hat * g) / w0, W)) # TODO: Written out one step later? # v_melt.assign(v0 - darcy * (grad(p) * p0 / h - deltarho * yvec * g) / w0) # TODO: use nP after to avoid projection? solve(r == 0, u, bcs) nV, nP, nT, nTf = u.split() # TODO: write with Tf, ... etc if count % output_every == 0: time_left(count, t_end / time_step, run_time_init) # TODO: timestep vs dt # TODO: Make sure all writes are to the same function for each time step files['T_fluid'].write(nTf, t) files['p'].write(nP, t) files['v_solid'].write(nV, t) files['T_solid'].write(nT, t) files['mu'].write(mu, t) files['v_melt'].write(v_melt, t) files['gradp'].write(project(grad(nP), W), t) files['rho'].write(project(rhosolid, S), t) files['Tf_grad'].write(project(grad(Tf), W), t) files['advect'].write(project(dt * dot(v_melt, grad(nTf))), t) files['ht'].write(project(heat_transfer, S), t) assign(T0, nT) assign(v0, nV) assign(Tf0, nTf) t += time_step count += 1 log('Case mu={}, Tb={}, k={} complete. Run time = {:.2f} minutes'.format( mu_a, Tb, k_s, (clock() - run_time_init) / 60.0))
# Create mesh xmin, ymin, zmin = geometry["xmin"], geometry["ymin"], geometry["zmin"] xmax, ymax, zmax = geometry["xmax"], geometry["ymax"], geometry["zmax"] mesh = BoxMesh(MPI.comm_world, Point(xmin, ymin, zmin), Point(xmax, ymax, zmax), nx, ny, nz) pbc = PeriodicBoundary(geometry) # xdmf output xdmf_u = XDMFFile(mesh.mpi_comm(), outdir_base + "u.xdmf") xdmf_p = XDMFFile(mesh.mpi_comm(), outdir_base + "p.xdmf") xdmf_curl = XDMFFile(mesh.mpi_comm(), outdir_base + "curl.xdmf") # Required elements W_E_2 = VectorElement("DG", mesh.ufl_cell(), k) T_E_2 = VectorElement("DG", mesh.ufl_cell(), 0) Wbar_E_2 = VectorElement("DGT", mesh.ufl_cell(), kbar) Wbar_E_2_H12 = VectorElement("CG", mesh.ufl_cell(), kbar)["facet"] Q_E = FiniteElement("DG", mesh.ufl_cell(), k - 1) Qbar_E = FiniteElement("DGT", mesh.ufl_cell(), k) # Function spaces for projection W_2 = FunctionSpace(mesh, W_E_2) T_2 = FunctionSpace(mesh, T_E_2) Wbar_2 = FunctionSpace(mesh, Wbar_E_2, constrained_domain=pbc) Wbar_2_H12 = FunctionSpace(mesh, Wbar_E_2_H12, constrained_domain=pbc) # Function spaces for Stokes mixedL = FunctionSpace(mesh, MixedElement([W_E_2, Q_E]))