def facet_length(facet):
    """ calculate FEniCS facet length """
    v_idx = facet.entities(0)
    v0 = Vertex(facet.mesh(), v_idx[0])
    v1 = Vertex(facet.mesh(), v_idx[1])
    x0 = v0.point().x()
    x1 = v1.point().x()
    y0 = v0.point().y()
    y1 = v1.point().y()
    return ((x1 - x0)**2 + (y1 - y0)**2)**0.5
Exemple #2
0
def hat_function_grad(vertex, cell):
    """Compute L^\infty-norm of gradient of hat function on 'cell'
    and value 1 in 'vertex'."""
    # TODO: fix using ghosted mesh
    not_working_in_parallel("function 'hat_function_grad'")

    assert vertex in vertices(cell), "vertex not in cell!"

    # Find adjacent facet
    f = [f for f in facets(cell) if not vertex in vertices(f)]
    assert len(f) == 1, "Something strange with adjacent cell!"
    f = f[0]

    # Get unit normal
    n = f.normal()
    n /= n.norm()

    # Pick some vertex on facet
    # FIXME: Is it correct index in parallel?
    facet_vertex_0 = Vertex(cell.mesh(), f.entities(0)[0])

    # Compute signed distance from vertex to facet plane
    d = (facet_vertex_0.point() - vertex.point()).dot(n)

    # Return norm of gradient
    assert d != 0.0, "Degenerate cell!"
    return 1.0/abs(d)
Exemple #3
0
def myassemble(mesh):
    # Define basis functions and their gradients on the reference elements.
    def phi0(x):
        return 1.0 - x[0] - x[1]

    def phi1(x):
        return x[0]

    def phi2(x):
        return x[1]

    def f(x):
        return 1.0

    phi = [phi0, phi1, phi2]
    dphi = np.array(([-1.0, -1.0], [1.0, 0.0], [0.0, 1.0]))

    # Define quadrature points
    midpoints = np.array(([0.5, 0.0], [0.5, 0.5], [0.0, 0.5]))

    N = mesh.num_vertices()

    A = np.zeros((N, N))

    b = np.zeros((N, 1))

    # Used to hold cell vertices
    coord = np.zeros([3, 2])

    # Iterate over all cells, adding integral contribution to matrix/vector
    for c in cells(mesh):

        # Extract node numbers and vertex coordinates
        nodes = c.entities(0).astype('int')
        for i in range(0, 3):
            v = Vertex(mesh, int(nodes[i]))
            for j in range(0, 2):
                coord[i][j] = v.point()[j]

        # Compute Jacobian of map and area of cell
        J = np.outer(coord[0, :], dphi[0]) + \
            np.outer(coord[1, :], dphi[1]) + \
            np.outer(coord[2, :], dphi[2])
        dx = 0.5 * abs(np.linalg.det(J))

        # Iterate over quadrature points
        for p in midpoints:
            # Map p to physical cell
            x = coord[0, :] * phi[0](p) + \
                coord[1, :] * phi[1](p) + \
                coord[2, :] * phi[2](p)

            # Iterate over test functions
            for i in range(0, 3):
                v = phi[i](p)
                dv = np.linalg.solve(J.transpose(), dphi[i])

                # Assemble vector (linear form)
                integral = f(x)*v*dx / 3.0
                b[nodes[i]] += integral

                # Iterate over trial functions
                for j in range(0, 3):
                    u = phi[j](p)
                    du = np.linalg.solve(J.transpose(), dphi[j])

                    # Assemble matrix (bilinear form)
                    integral = (np.inner(du, dv)) * dx / 3.0
                    integral += u * v * dx / 3.0
                    A[nodes[i], nodes[j]] += integral

    return A, b
Exemple #4
0
def edge_to_vector(edge):
    v0, v1 = edge.entities(0)
    mesh = edge.mesh()
    v0 = Vertex(mesh, v0)
    v1 = Vertex(mesh, v1)
    return point_to_array(v1.point() - v0.point())