Exemple #1
0
    def __init__(self, functional, controls, solver):

        self.solver = solver
        if not isinstance(solver, Solver):
            raise ValueError, "solver argument of wrong type."

        self._functional = functional
        if not isinstance(functional, PrototypeFunctional):
            raise ValueError, "invalid functional argument."

        # Hidden attributes
        self._solver_params = solver.parameters
        self._problem_params = solver.problem.parameters
        self._time_integrator = None

        # Controls
        self.controls = enlisting.enlist(controls)

        # Conform to dolfin-adjoint API
        self.scale = 1
        self.eval_cb_pre = lambda *args: None
        self.eval_cb_post = lambda *args: None
        self.derivative_cb_pre = lambda *args: None
        self.derivative_cb_post = lambda *args: None
        self.replay_cb = lambda *args: None
        self.hessian_cb = lambda *args: None
        self.cache = None
        self.current_func_value = None
        self.hessian = None
        self.functional = Functional(None)
    def __init__(self, functional, controls, solver):

        self.solver = solver
        if not isinstance(solver, Solver):
            raise ValueError, "solver argument of wrong type."

        self._functional = functional
        if not isinstance(functional, PrototypeFunctional):
            raise ValueError, "invalid functional argument."

        # Hidden attributes
        self._solver_params = solver.parameters
        self._problem_params = solver.problem.parameters
        self._time_integrator = None

        # Controls
        self.controls = enlisting.enlist(controls)

        # Conform to dolfin-adjoint API
        self.scale = 1
        self.eval_cb_pre = lambda *args: None
        self.eval_cb_post = lambda *args: None
        self.derivative_cb_pre = lambda *args: None
        self.derivative_cb_post = lambda *args: None
        self.replay_cb = lambda *args: None
        self.hessian_cb = lambda *args: None
        self.cache = None
        self.current_func_value = None
        self.hessian = None
        self.functional = Functional(None)
Exemple #3
0
    def derivative(self, forget=False, **kwargs):
        """ Computes the first derivative of the functional with respect to its
        controls by solving the adjoint equations. """

        log(INFO, 'Start evaluation of dj')
        timer = Timer("dj evaluation")

        self.functional = self.time_integrator.dolfin_adjoint_functional(self.solver.state)
        dj = compute_gradient(self.functional, self.controls, forget=forget, **kwargs)
        parameters["adjoint"]["stop_annotating"] = False

        log(INFO, "Runtime: " + str(timer.stop()) + " s")

        return enlisting.enlist(dj)
    def derivative(self, forget=False, **kwargs):
        """ Computes the first derivative of the functional with respect to its
        controls by solving the adjoint equations. """

        log(INFO, 'Start evaluation of dj')
        timer = Timer("dj evaluation")

        if not hasattr(self, "time_integrator"):
            self.evaluate()
        self.functional = self.time_integrator.dolfin_adjoint_functional(
            self.solver.state)
        dj = compute_gradient(self.functional,
                              self.controls,
                              forget=forget,
                              **kwargs)
        parameters["adjoint"]["stop_annotating"] = False

        log(INFO, "Runtime: " + str(timer.stop()) + " s")

        return enlisting.enlist(dj)
Exemple #5
0
    def __call__(self, value):
        """ Evaluates the reduced functional for the given control value.

        Args:
            value: The point in control space where to perform the Taylor test. Must be of the same type as the Control (e.g. Function, Constant or lists of latter).

        Returns:
            float: The functional value.
        """

        value = enlisting.enlist(value)
        # Update the control values.
        # Note that we do not update the control values on the tape,
        # because OpenTidalFarm reannotates the tape in each iteration.
	for c, v in zip(self.controls, value):
            vec = c.coeff.vector()
            if vec.id() == v.vector().id():
                continue
            vec.zero()
            vec.axpy(1, v.vector())

        return self.evaluate()
    def __call__(self, value):
        """ Evaluates the reduced functional for the given control value.

        Args:
            value: The point in control space where to perform the Taylor test. Must be of the same type as the Control (e.g. Function, Constant or lists of latter).

        Returns:
            float: The functional value.
        """

        value = enlisting.enlist(value)
        # Update the control values.
        # Note that we do not update the control values on the tape,
        # because OpenTidalFarm reannotates the tape in each iteration.
        for c, v in zip(self.controls, value):
            vec = c.coeff.vector()
            if vec.id() == v.vector().id():
                continue
            vec.zero()
            vec.axpy(1, v.vector())

        return self.evaluate()