Exemple #1
0
def run_scalar_test(mesh, V, degree):
    """ Manufactured Poisson problem, solving u = x[1]**p, where p is the
    degree of the Lagrange function space.

    """
    u, v = TrialFunction(V), TestFunction(V)
    a = inner(grad(u), grad(v)) * dx

    # Get quadrature degree for bilinear form integrand (ignores effect of non-affine map)
    a = inner(grad(u), grad(v)) * dx(metadata={"quadrature_degree": -1})
    a.integrals()[0].metadata()["quadrature_degree"] = ufl.algorithms.estimate_total_polynomial_degree(a)

    # Source term
    x = SpatialCoordinate(mesh)
    u_exact = x[1]**degree
    f = - div(grad(u_exact))

    # Set quadrature degree for linear form integrand (ignores effect of non-affine map)
    L = inner(f, v) * dx(metadata={"quadrature_degree": -1})

    L.integrals()[0].metadata()["quadrature_degree"] = ufl.algorithms.estimate_total_polynomial_degree(L)
    L = fem.Form(L)

    u_bc = Function(V)
    u_bc.interpolate(lambda x: x[1]**degree)

    # Create Dirichlet boundary condition
    facetdim = mesh.topology.dim - 1
    mesh.topology.create_connectivity(facetdim, mesh.topology.dim)
    bndry_facets = np.where(np.array(cpp.mesh.compute_boundary_facets(mesh.topology)) == 1)[0]
    bdofs = locate_dofs_topological(V, facetdim, bndry_facets)
    bc = DirichletBC(u_bc, bdofs)

    b = assemble_vector(L)
    apply_lifting(b, [a], [[bc]])
    b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
    set_bc(b, [bc])

    a = fem.Form(a)
    A = assemble_matrix(a, [bc])
    A.assemble()

    # Create LU linear solver
    solver = PETSc.KSP().create(MPI.COMM_WORLD)
    solver.setType(PETSc.KSP.Type.PREONLY)
    solver.getPC().setType(PETSc.PC.Type.LU)
    solver.setOperators(A)

    uh = Function(V)
    solver.solve(b, uh.vector)
    uh.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD)

    M = (u_exact - uh)**2 * dx
    M = fem.Form(M)

    error = mesh.mpi_comm().allreduce(assemble_scalar(M), op=MPI.SUM)
    assert np.absolute(error) < 1.0e-14
Exemple #2
0
def test_lambda_assembler():
    """Tests assembly with a lambda function

    """
    mesh = UnitSquareMesh(MPI.COMM_WORLD, 5, 5)
    V = fem.FunctionSpace(mesh, ("Lagrange", 1))
    u, v = ufl.TrialFunction(V), ufl.TestFunction(V)

    a = inner(u, v) * dx

    # Initial assembly
    a_form = fem.Form(a)

    rdata = []
    cdata = []
    vdata = []

    def mat_insert(rows, cols, vals):
        vdata.append(vals)
        rdata.append(numpy.repeat(rows, len(cols)))
        cdata.append(numpy.tile(cols, len(rows)))
        return 0

    dolfinx.cpp.fem.assemble_matrix(mat_insert, a_form._cpp_object, [])
    vdata = numpy.array(vdata).flatten()
    cdata = numpy.array(cdata).flatten()
    rdata = numpy.array(rdata).flatten()
    mat = scipy.sparse.coo_matrix((vdata, (rdata, cdata)))
    v = numpy.ones(mat.shape[1])
    s = MPI.COMM_WORLD.allreduce(mat.dot(v).sum(), MPI.SUM)
    assert numpy.isclose(s, 1.0)
Exemple #3
0
def _solve_varproblem(*args, **kwargs):
    "Solve variational problem a == L or F == 0"

    # Extract arguments
    eq, u, bcs, J, tol, M, form_compiler_parameters, petsc_options \
        = _extract_args(*args, **kwargs)

    # Solve linear variational problem
    if isinstance(eq.lhs, ufl.Form) and isinstance(eq.rhs, ufl.Form):

        a = fem.Form(eq.lhs, form_compiler_parameters=form_compiler_parameters)
        L = fem.Form(eq.rhs, form_compiler_parameters=form_compiler_parameters)

        b = fem.assemble_vector(L._cpp_object)
        fem.apply_lifting(b, [a._cpp_object], [bcs])
        b.ghostUpdate(addv=PETSc.InsertMode.ADD,
                      mode=PETSc.ScatterMode.REVERSE)
        fem.set_bc(b, bcs)

        A = fem.assemble_matrix(a._cpp_object, bcs)
        A.assemble()

        comm = L._cpp_object.mesh().mpi_comm()
        ksp = PETSc.KSP().create(comm)
        ksp.setOperators(A)

        ksp.setOptionsPrefix("dolfin_solve_")
        opts = PETSc.Options()
        opts.prefixPush("dolfin_solve_")
        for k, v in petsc_options.items():
            opts[k] = v
        opts.prefixPop()

        ksp.setFromOptions()
        ksp.solve(b, u.vector)

    # Solve nonlinear variational problem
    else:

        raise RuntimeError("Not implemented")
Exemple #4
0
def test_manufactured_vector1(family, degree, filename, datadir):
    """Projection into H(div/curl) spaces"""

    with XDMFFile(MPI.COMM_WORLD,
                  os.path.join(datadir, filename),
                  "r",
                  encoding=XDMFFile.Encoding.ASCII) as xdmf:
        mesh = xdmf.read_mesh(name="Grid")

    V = FunctionSpace(mesh, (family, degree))
    W = VectorFunctionSpace(mesh, ("CG", degree))
    u, v = ufl.TrialFunction(V), ufl.TestFunction(V)
    a = inner(u, v) * dx

    # Source term
    x = SpatialCoordinate(mesh)
    u_ref = x[0]**degree
    L = inner(u_ref, v[0]) * dx

    b = assemble_vector(L)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)

    A = assemble_matrix(a)
    A.assemble()

    # Create LU linear solver (Note: need to use a solver that
    # re-orders to handle pivots, e.g. not the PETSc built-in LU
    # solver)
    solver = PETSc.KSP().create(MPI.COMM_WORLD)
    solver.setType("preonly")
    solver.getPC().setType('lu')
    solver.setOperators(A)

    # Solve
    uh = Function(V)
    solver.solve(b, uh.vector)
    uh.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                          mode=PETSc.ScatterMode.FORWARD)

    u_exact = Function(W)
    u_exact.interpolate(lambda x: np.array([
        x[0]**degree if i == 0 else 0 * x[0] for i in range(mesh.topology.dim)
    ]))

    M = inner(uh - u_exact, uh - u_exact) * dx
    M = fem.Form(M)
    error = mesh.mpi_comm().allreduce(assemble_scalar(M), op=MPI.SUM)

    assert np.absolute(error) < 1.0e-14
def run_vector_test(mesh, V, degree):
    """Projection into H(div/curl) spaces"""
    u, v = ufl.TrialFunction(V), ufl.TestFunction(V)
    a = inner(u, v) * dx

    # Source term
    x = SpatialCoordinate(mesh)
    u_exact = x[0]**degree
    L = inner(u_exact, v[0]) * dx

    with common.Timer("Assemble vector"):
        b = assemble_vector(L)
        b.ghostUpdate(addv=PETSc.InsertMode.ADD,
                      mode=PETSc.ScatterMode.REVERSE)

    with common.Timer("Assemble matrix"):
        A = assemble_matrix(a)
        A.assemble()

    with common.Timer("Solve"):
        # Create LU linear solver (Note: need to use a solver that
        # re-orders to handle pivots, e.g. not the PETSc built-in LU solver)
        solver = PETSc.KSP().create(MPI.COMM_WORLD)
        solver.setType("preonly")
        solver.getPC().setType('lu')
        solver.setOperators(A)

        # Solve
        uh = Function(V)
        solver.solve(b, uh.vector)
        uh.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                              mode=PETSc.ScatterMode.FORWARD)

    with common.Timer("Error functional compile"):
        # Calculate error
        M = (u_exact - uh[0])**2 * dx
        for i in range(1, mesh.topology.dim):
            M += uh[i]**2 * dx
        M = fem.Form(M)

    with common.Timer("Error assembly"):
        error = mesh.mpi_comm().allreduce(assemble_scalar(M), op=MPI.SUM)

    common.list_timings(MPI.COMM_WORLD, [common.TimingType.wall])
    assert np.absolute(error) < 1.0e-14
Exemple #6
0
def test_manufactured_poisson(degree, filename, datadir):
    """ Manufactured Poisson problem, solving u = x[1]**p, where p is the
    degree of the Lagrange function space.

    """

    with XDMFFile(MPI.comm_world, os.path.join(datadir, filename)) as xdmf:
        mesh = xdmf.read_mesh(GhostMode.none)

    V = FunctionSpace(mesh, ("Lagrange", degree))
    u, v = TrialFunction(V), TestFunction(V)
    a = inner(grad(u), grad(v)) * dx

    # Get quadrature degree for bilinear form integrand (ignores effect
    # of non-affine map)
    a = inner(grad(u), grad(v)) * dx(metadata={"quadrature_degree": -1})
    a.integrals()[0].metadata(
    )["quadrature_degree"] = ufl.algorithms.estimate_total_polynomial_degree(a)

    # Source term
    x = SpatialCoordinate(mesh)
    u_exact = x[1]**degree
    f = -div(grad(u_exact))

    # Set quadrature degree for linear form integrand (ignores effect of
    # non-affine map)
    L = inner(f, v) * dx(metadata={"quadrature_degree": -1})
    L.integrals()[0].metadata(
    )["quadrature_degree"] = ufl.algorithms.estimate_total_polynomial_degree(L)

    t0 = time.time()
    L = fem.Form(L)
    t1 = time.time()
    print("Linear form compile time:", t1 - t0)

    u_bc = Function(V)
    u_bc.interpolate(lambda x: x[1]**degree)

    # Create Dirichlet boundary condition
    mesh.create_connectivity_all()
    facetdim = mesh.topology.dim - 1
    bndry_facets = np.where(
        np.array(mesh.topology.on_boundary(facetdim)) == 1)[0]
    bdofs = locate_dofs_topological(V, facetdim, bndry_facets)
    assert (len(bdofs) < V.dim())
    bc = DirichletBC(u_bc, bdofs)

    t0 = time.time()
    b = assemble_vector(L)
    apply_lifting(b, [a], [[bc]])
    b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
    set_bc(b, [bc])
    t1 = time.time()
    print("Vector assembly time:", t1 - t0)

    t0 = time.time()
    a = fem.Form(a)
    t1 = time.time()
    print("Bilinear form compile time:", t1 - t0)

    t0 = time.time()
    A = assemble_matrix(a, [bc])
    A.assemble()
    t1 = time.time()
    print("Matrix assembly time:", t1 - t0)

    # Create LU linear solver
    solver = PETSc.KSP().create(MPI.comm_world)
    solver.setType(PETSc.KSP.Type.PREONLY)
    solver.getPC().setType(PETSc.PC.Type.LU)
    solver.setOperators(A)
    # Solve
    t0 = time.time()
    uh = Function(V)
    solver.solve(b, uh.vector)
    uh.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                          mode=PETSc.ScatterMode.FORWARD)

    t1 = time.time()
    print("Linear solver time:", t1 - t0)

    M = (u_exact - uh)**2 * dx
    t0 = time.time()
    M = fem.Form(M)
    t1 = time.time()
    print("Error functional compile time:", t1 - t0)

    t0 = time.time()
    error = assemble_scalar(M)
    error = MPI.sum(mesh.mpi_comm(), error)
    t1 = time.time()

    print("Error assembly time:", t1 - t0)
    assert np.absolute(error) < 1.0e-14
def run_dg_test(mesh, V, degree):
    """ Manufactured Poisson problem, solving u = x[component]**n, where n is the
    degree of the Lagrange function space.
    """
    u, v = TrialFunction(V), TestFunction(V)

    # Exact solution
    x = SpatialCoordinate(mesh)
    u_exact = x[1]**degree

    # Coefficient
    k = Function(V)
    k.vector.set(2.0)
    k.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                         mode=PETSc.ScatterMode.FORWARD)

    # Source term
    f = -div(k * grad(u_exact))

    # Mesh normals and element size
    n = FacetNormal(mesh)
    h = CellDiameter(mesh)
    h_avg = (h("+") + h("-")) / 2.0

    # Penalty parameter
    alpha = 32

    dx_ = dx(metadata={"quadrature_degree": -1})
    ds_ = ds(metadata={"quadrature_degree": -1})
    dS_ = dS(metadata={"quadrature_degree": -1})

    a = inner(k * grad(u), grad(v)) * dx_ \
        - k("+") * inner(avg(grad(u)), jump(v, n)) * dS_ \
        - k("+") * inner(jump(u, n), avg(grad(v))) * dS_ \
        + k("+") * (alpha / h_avg) * inner(jump(u, n), jump(v, n)) * dS_ \
        - inner(k * grad(u), v * n) * ds_ \
        - inner(u * n, k * grad(v)) * ds_ \
        + (alpha / h) * inner(k * u, v) * ds_
    L = inner(f, v) * dx_ - inner(k * u_exact * n, grad(v)) * ds_ \
        + (alpha / h) * inner(k * u_exact, v) * ds_

    for integral in a.integrals():
        integral.metadata(
        )["quadrature_degree"] = ufl.algorithms.estimate_total_polynomial_degree(
            a)
    for integral in L.integrals():
        integral.metadata(
        )["quadrature_degree"] = ufl.algorithms.estimate_total_polynomial_degree(
            L)

    b = assemble_vector(L)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)

    A = assemble_matrix(a, [])
    A.assemble()

    # Create LU linear solver
    solver = PETSc.KSP().create(MPI.COMM_WORLD)
    solver.setType(PETSc.KSP.Type.PREONLY)
    solver.getPC().setType(PETSc.PC.Type.LU)
    solver.setOperators(A)

    # Solve
    uh = Function(V)
    solver.solve(b, uh.vector)
    uh.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                          mode=PETSc.ScatterMode.FORWARD)

    # Calculate error
    M = (u_exact - uh)**2 * dx
    M = fem.Form(M)

    error = mesh.mpi_comm().allreduce(assemble_scalar(M), op=MPI.SUM)
    assert np.absolute(error) < 1.0e-14
Exemple #8
0
    def __init__(self,
                 a: ufl.Form,
                 L: ufl.Form,
                 bcs: typing.List[fem.DirichletBC] = [],
                 u: fem.Function = None,
                 petsc_options={},
                 form_compiler_parameters={},
                 jit_parameters={}):
        """Initialize solver for a linear variational problem.

        Parameters
        ----------
        a
            A bilinear UFL form, the left hand side of the variational problem.

        L
            A linear UFL form, the right hand side of the variational problem.

        bcs
            A list of Dirichlet boundary conditions.

        u
            The solution function. It will be created if not provided.

        petsc_options
            Parameters that is passed to the linear algebra backend PETSc.
            For available choices for the 'petsc_options' kwarg, see the
            `PETSc-documentation <https://www.mcs.anl.gov/petsc/documentation/index.html>`.

        form_compiler_parameters
            Parameters used in FFCx compilation of this form. Run `ffcx --help` at
            the commandline to see all available options. Takes priority over all
            other parameter values, except for `scalar_type` which is determined by
            DOLFINx.

        jit_parameters
            Parameters used in CFFI JIT compilation of C code generated by FFCx.
            See `python/dolfinx/jit.py` for all available parameters.
            Takes priority over all other parameter values.

        .. code-block:: python
            problem = LinearProblem(a, L, [bc0, bc1], petsc_options={"ksp_type": "preonly", "pc_type": "lu"})
        """
        self._a = fem.Form(a,
                           form_compiler_parameters=form_compiler_parameters,
                           jit_parameters=jit_parameters)
        self._A = fem.create_matrix(self._a)

        self._L = fem.Form(L,
                           form_compiler_parameters=form_compiler_parameters,
                           jit_parameters=jit_parameters)
        self._b = fem.create_vector(self._L)

        if u is None:
            # Extract function space from TrialFunction (which is at the
            # end of the argument list as it is numbered as 1, while the
            # Test function is numbered as 0)
            self.u = fem.Function(a.arguments()[-1].ufl_function_space())
        else:
            self.u = u
        self.bcs = bcs

        self._solver = PETSc.KSP().create(
            self.u.function_space.mesh.mpi_comm())
        self._solver.setOperators(self._A)

        # Give PETSc solver options a unique prefix
        solver_prefix = "dolfinx_solve_{}".format(id(self))
        self._solver.setOptionsPrefix(solver_prefix)

        # Set PETSc options
        opts = PETSc.Options()
        opts.prefixPush(solver_prefix)
        for k, v in petsc_options.items():
            opts[k] = v
        opts.prefixPop()
        self._solver.setFromOptions()