Exemple #1
0
    def F_nest(self, snes, x, F):
        assert x.getType() == "nest" and F.getType() == "nest"
        # Update solution
        x = x.getNestSubVecs()
        for x_sub, var_sub in zip(x, self.soln_vars):
            x_sub.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                              mode=PETSc.ScatterMode.FORWARD)
            with x_sub.localForm() as _x:
                var_sub.x.array[:] = _x.array_r

        # Assemble
        bcs1 = bcs_by_block(extract_function_spaces(self.a, 1), self.bcs)
        for L, F_sub, a in zip(self.L, F.getNestSubVecs(), self.a):
            with F_sub.localForm() as F_sub_local:
                F_sub_local.set(0.0)
            assemble_vector(F_sub, L)
            apply_lifting(F_sub, a, bcs=bcs1, x0=x, scale=-1.0)
            F_sub.ghostUpdate(addv=PETSc.InsertMode.ADD,
                              mode=PETSc.ScatterMode.REVERSE)

        # Set bc value in RHS
        bcs0 = bcs_by_block(extract_function_spaces(self.L), self.bcs)
        for F_sub, bc, x_sub in zip(F.getNestSubVecs(), bcs0, x):
            set_bc(F_sub, bc, x_sub, -1.0)

        # Must assemble F here in the case of nest matrices
        F.assemble()
    def nested_solve():
        """Nested solver"""
        A = assemble_matrix_nest(form([[a00, a01], [a10, a11]]),
                                 bcs=[bc0, bc1],
                                 mat_types=[["baij", "aij"], ["aij", ""]])
        A.assemble()
        P = assemble_matrix_nest(form([[p00, p01], [p10, p11]]),
                                 bcs=[bc0, bc1],
                                 mat_types=[["aij", "aij"], ["aij", ""]])
        P.assemble()
        b = assemble_vector_nest(form([L0, L1]))
        apply_lifting_nest(b, form([[a00, a01], [a10, a11]]), [bc0, bc1])
        for b_sub in b.getNestSubVecs():
            b_sub.ghostUpdate(addv=PETSc.InsertMode.ADD,
                              mode=PETSc.ScatterMode.REVERSE)
        bcs = bcs_by_block(extract_function_spaces(form([L0, L1])), [bc0, bc1])
        set_bc_nest(b, bcs)
        b.assemble()

        ksp = PETSc.KSP()
        ksp.create(mesh.comm)
        ksp.setOperators(A, P)
        nested_IS = P.getNestISs()
        ksp.setType("minres")
        pc = ksp.getPC()
        pc.setType("fieldsplit")
        pc.setFieldSplitIS(["u", nested_IS[0][0]], ["p", nested_IS[1][1]])
        ksp_u, ksp_p = pc.getFieldSplitSubKSP()
        ksp_u.setType("preonly")
        ksp_u.getPC().setType('lu')
        ksp_p.setType("preonly")

        def monitor(ksp, its, rnorm):
            # print("Num it, rnorm:", its, rnorm)
            pass

        ksp.setTolerances(rtol=1.0e-8, max_it=50)
        ksp.setMonitor(monitor)
        ksp.setFromOptions()
        x = b.copy()
        ksp.solve(b, x)
        assert ksp.getConvergedReason() > 0
        return b.norm(), x.norm(), nest_matrix_norm(A), nest_matrix_norm(P)
Exemple #3
0
def test_matrix_assembly_block_nl():
    """Test assembly of block matrices and vectors into (a) monolithic
    blocked structures, PETSc Nest structures, and monolithic structures
    in the nonlinear setting
    """
    mesh = create_unit_square(MPI.COMM_WORLD, 4, 8)
    p0, p1 = 1, 2
    P0 = ufl.FiniteElement("Lagrange", mesh.ufl_cell(), p0)
    P1 = ufl.FiniteElement("Lagrange", mesh.ufl_cell(), p1)
    V0 = FunctionSpace(mesh, P0)
    V1 = FunctionSpace(mesh, P1)

    def initial_guess_u(x):
        return np.sin(x[0]) * np.sin(x[1])

    def initial_guess_p(x):
        return -x[0]**2 - x[1]**3

    def bc_value(x):
        return np.cos(x[0]) * np.cos(x[1])

    facetdim = mesh.topology.dim - 1
    bndry_facets = locate_entities_boundary(
        mesh, facetdim,
        lambda x: np.logical_or(np.isclose(x[0], 0.0), np.isclose(x[0], 1.0)))

    u_bc = Function(V1)
    u_bc.interpolate(bc_value)
    bdofs = locate_dofs_topological(V1, facetdim, bndry_facets)
    bc = dirichletbc(u_bc, bdofs)

    # Define variational problem
    du, dp = ufl.TrialFunction(V0), ufl.TrialFunction(V1)
    u, p = Function(V0), Function(V1)
    v, q = ufl.TestFunction(V0), ufl.TestFunction(V1)

    u.interpolate(initial_guess_u)
    p.interpolate(initial_guess_p)

    f = 1.0
    g = -3.0

    F0 = inner(u, v) * dx + inner(p, v) * dx - inner(f, v) * dx
    F1 = inner(u, q) * dx + inner(p, q) * dx - inner(g, q) * dx

    a_block = form([[derivative(F0, u, du),
                     derivative(F0, p, dp)],
                    [derivative(F1, u, du),
                     derivative(F1, p, dp)]])
    L_block = form([F0, F1])

    # Monolithic blocked
    x0 = create_vector_block(L_block)
    scatter_local_vectors(x0, [u.vector.array_r, p.vector.array_r],
                          [(u.function_space.dofmap.index_map,
                            u.function_space.dofmap.index_map_bs),
                           (p.function_space.dofmap.index_map,
                            p.function_space.dofmap.index_map_bs)])
    x0.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                   mode=PETSc.ScatterMode.FORWARD)

    # Ghosts are updated inside assemble_vector_block
    A0 = assemble_matrix_block(a_block, bcs=[bc])
    b0 = assemble_vector_block(L_block, a_block, bcs=[bc], x0=x0, scale=-1.0)
    A0.assemble()
    assert A0.getType() != "nest"
    Anorm0 = A0.norm()
    bnorm0 = b0.norm()

    # Nested (MatNest)
    x1 = create_vector_nest(L_block)
    for x1_soln_pair in zip(x1.getNestSubVecs(), (u, p)):
        x1_sub, soln_sub = x1_soln_pair
        soln_sub.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                                    mode=PETSc.ScatterMode.FORWARD)
        soln_sub.vector.copy(result=x1_sub)
        x1_sub.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                           mode=PETSc.ScatterMode.FORWARD)

    A1 = assemble_matrix_nest(a_block, bcs=[bc])
    b1 = assemble_vector_nest(L_block)
    apply_lifting_nest(b1, a_block, bcs=[bc], x0=x1, scale=-1.0)
    for b_sub in b1.getNestSubVecs():
        b_sub.ghostUpdate(addv=PETSc.InsertMode.ADD,
                          mode=PETSc.ScatterMode.REVERSE)
    bcs0 = bcs_by_block([L.function_spaces[0] for L in L_block], [bc])

    set_bc_nest(b1, bcs0, x1, scale=-1.0)
    A1.assemble()

    assert A1.getType() == "nest"
    assert nest_matrix_norm(A1) == pytest.approx(Anorm0, 1.0e-12)
    assert b1.norm() == pytest.approx(bnorm0, 1.0e-12)

    # Monolithic version
    E = P0 * P1
    W = FunctionSpace(mesh, E)
    dU = ufl.TrialFunction(W)
    U = Function(W)
    u0, u1 = ufl.split(U)
    v0, v1 = ufl.TestFunctions(W)

    U.sub(0).interpolate(initial_guess_u)
    U.sub(1).interpolate(initial_guess_p)

    F = inner(u0, v0) * dx + inner(u1, v0) * dx + inner(u0, v1) * dx + inner(u1, v1) * dx \
        - inner(f, v0) * ufl.dx - inner(g, v1) * dx
    J = derivative(F, U, dU)
    F, J = form(F), form(J)

    bdofsW_V1 = locate_dofs_topological((W.sub(1), V1), facetdim, bndry_facets)

    bc = dirichletbc(u_bc, bdofsW_V1, W.sub(1))
    A2 = assemble_matrix(J, bcs=[bc])
    A2.assemble()
    b2 = assemble_vector(F)
    apply_lifting(b2, [J], bcs=[[bc]], x0=[U.vector], scale=-1.0)
    b2.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
    set_bc(b2, [bc], x0=U.vector, scale=-1.0)
    assert A2.getType() != "nest"
    assert A2.norm() == pytest.approx(Anorm0, 1.0e-12)
    assert b2.norm() == pytest.approx(bnorm0, 1.0e-12)
Exemple #4
0
# Next, the right-hand side vector is assembled and then modified to
# account for non-homogeneous Dirichlet boundary conditions:

# +
b = fem.petsc.assemble_vector_nest(L)

# Modify ('lift') the RHS for Dirichlet boundary conditions
fem.petsc.apply_lifting_nest(b, a, bcs=bcs)

# Sum contributions from ghost entries on the owner
for b_sub in b.getNestSubVecs():
    b_sub.ghostUpdate(addv=PETSc.InsertMode.ADD,
                      mode=PETSc.ScatterMode.REVERSE)

# Set Dirichlet boundary condition values in the RHS
bcs0 = fem.bcs_by_block(extract_function_spaces(L), bcs)
fem.petsc.set_bc_nest(b, bcs0)
# -

# Ths pressure field for this problem is determined only up to a
# constant. We can supply the vector that spans the nullspace and any
# component of the solution in this direction will be eliminated during
# the iterative linear solution process.

# +
# Create nullspace vector
null_vec = fem.petsc.create_vector_nest(L)

# Set velocity part to zero and the pressure part to a non-zero constant
null_vecs = null_vec.getNestSubVecs()
null_vecs[0].set(0.0), null_vecs[1].set(1.0)
def test_assembly_solve_block(mode):
    """Solve a two-field mass-matrix like problem with block matrix approaches
    and test that solution is the same"""
    mesh = create_unit_square(MPI.COMM_WORLD, 32, 31, ghost_mode=mode)
    P = ufl.FiniteElement("Lagrange", mesh.ufl_cell(), 1)
    V0 = FunctionSpace(mesh, P)
    V1 = V0.clone()

    # Locate facets on boundary
    facetdim = mesh.topology.dim - 1
    bndry_facets = locate_entities_boundary(mesh, facetdim, lambda x: np.logical_or(np.isclose(x[0], 0.0),
                                                                                    np.isclose(x[0], 1.0)))

    bdofsV0 = locate_dofs_topological(V0, facetdim, bndry_facets)
    bdofsV1 = locate_dofs_topological(V1, facetdim, bndry_facets)

    u0_bc = PETSc.ScalarType(50.0)
    u1_bc = PETSc.ScalarType(20.0)
    bcs = [dirichletbc(u0_bc, bdofsV0, V0), dirichletbc(u1_bc, bdofsV1, V1)]

    # Variational problem
    u, p = ufl.TrialFunction(V0), ufl.TrialFunction(V1)
    v, q = ufl.TestFunction(V0), ufl.TestFunction(V1)
    f = 1.0
    g = -3.0
    zero = Function(V0)

    a00 = form(inner(u, v) * dx)
    a01 = form(zero * inner(p, v) * dx)
    a10 = form(zero * inner(u, q) * dx)
    a11 = form(inner(p, q) * dx)
    L0 = form(inner(f, v) * dx)
    L1 = form(inner(g, q) * dx)

    def monitor(ksp, its, rnorm):
        pass
        # print("Norm:", its, rnorm)

    A0 = assemble_matrix_block([[a00, a01], [a10, a11]], bcs=bcs)
    b0 = assemble_vector_block([L0, L1], [[a00, a01], [a10, a11]], bcs=bcs)
    A0.assemble()
    A0norm = A0.norm()
    b0norm = b0.norm()
    x0 = A0.createVecLeft()
    ksp = PETSc.KSP()
    ksp.create(mesh.comm)
    ksp.setOperators(A0)
    ksp.setMonitor(monitor)
    ksp.setType('cg')
    ksp.setTolerances(rtol=1.0e-14)
    ksp.setFromOptions()
    ksp.solve(b0, x0)
    x0norm = x0.norm()

    # Nested (MatNest)
    A1 = assemble_matrix_nest([[a00, a01], [a10, a11]], bcs=bcs, diagonal=1.0)
    A1.assemble()
    b1 = assemble_vector_nest([L0, L1])
    apply_lifting_nest(b1, [[a00, a01], [a10, a11]], bcs=bcs)
    for b_sub in b1.getNestSubVecs():
        b_sub.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
    bcs0 = bcs_by_block([L0.function_spaces[0], L1.function_spaces[0]], bcs)
    set_bc_nest(b1, bcs0)
    b1.assemble()

    b1norm = b1.norm()
    assert b1norm == pytest.approx(b0norm, 1.0e-12)
    A1norm = nest_matrix_norm(A1)
    assert A0norm == pytest.approx(A1norm, 1.0e-12)

    x1 = b1.copy()
    ksp = PETSc.KSP()
    ksp.create(mesh.comm)
    ksp.setMonitor(monitor)
    ksp.setOperators(A1)
    ksp.setType('cg')
    ksp.setTolerances(rtol=1.0e-12)
    ksp.setFromOptions()
    ksp.solve(b1, x1)
    x1norm = x1.norm()
    assert x1norm == pytest.approx(x0norm, rel=1.0e-12)

    # Monolithic version
    E = P * P
    W = FunctionSpace(mesh, E)
    u0, u1 = ufl.TrialFunctions(W)
    v0, v1 = ufl.TestFunctions(W)
    a = inner(u0, v0) * dx + inner(u1, v1) * dx
    L = inner(f, v0) * ufl.dx + inner(g, v1) * dx
    a, L = form(a), form(L)

    bdofsW0_V0 = locate_dofs_topological(W.sub(0), facetdim, bndry_facets)
    bdofsW1_V1 = locate_dofs_topological(W.sub(1), facetdim, bndry_facets)
    bcs = [dirichletbc(u0_bc, bdofsW0_V0, W.sub(0)), dirichletbc(u1_bc, bdofsW1_V1, W.sub(1))]

    A2 = assemble_matrix(a, bcs=bcs)
    A2.assemble()
    b2 = assemble_vector(L)
    apply_lifting(b2, [a], [bcs])
    b2.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
    set_bc(b2, bcs)
    A2norm = A2.norm()
    b2norm = b2.norm()
    assert A2norm == pytest.approx(A0norm, 1.0e-12)
    assert b2norm == pytest.approx(b0norm, 1.0e-12)

    x2 = b2.copy()
    ksp = PETSc.KSP()
    ksp.create(mesh.comm)
    ksp.setMonitor(monitor)
    ksp.setOperators(A2)
    ksp.setType('cg')
    ksp.getPC().setType('jacobi')
    ksp.setTolerances(rtol=1.0e-12)
    ksp.setFromOptions()
    ksp.solve(b2, x2)
    x2norm = x2.norm()
    assert x2norm == pytest.approx(x0norm, 1.0e-10)
def test_matrix_assembly_block(mode):
    """Test assembly of block matrices and vectors into (a) monolithic
    blocked structures, PETSc Nest structures, and monolithic
    structures"""
    mesh = create_unit_square(MPI.COMM_WORLD, 4, 8, ghost_mode=mode)
    p0, p1 = 1, 2
    P0 = ufl.FiniteElement("Lagrange", mesh.ufl_cell(), p0)
    P1 = ufl.FiniteElement("Lagrange", mesh.ufl_cell(), p1)
    V0 = FunctionSpace(mesh, P0)
    V1 = FunctionSpace(mesh, P1)

    # Locate facets on boundary
    facetdim = mesh.topology.dim - 1
    bndry_facets = locate_entities_boundary(mesh, facetdim, lambda x: np.logical_or(np.isclose(x[0], 0.0),
                                                                                    np.isclose(x[0], 1.0)))
    bdofsV1 = locate_dofs_topological(V1, facetdim, bndry_facets)
    u_bc = PETSc.ScalarType(50.0)
    bc = dirichletbc(u_bc, bdofsV1, V1)

    # Define variational problem
    u, p = ufl.TrialFunction(V0), ufl.TrialFunction(V1)
    v, q = ufl.TestFunction(V0), ufl.TestFunction(V1)
    f = 1.0
    g = -3.0
    zero = Function(V0)

    a00 = inner(u, v) * dx
    a01 = inner(p, v) * dx
    a10 = inner(u, q) * dx
    a11 = inner(p, q) * dx

    L0 = zero * inner(f, v) * dx
    L1 = inner(g, q) * dx

    a_block = form([[a00, a01], [a10, a11]])
    L_block = form([L0, L1])

    # Monolithic blocked
    A0 = assemble_matrix_block(a_block, bcs=[bc])
    A0.assemble()
    b0 = assemble_vector_block(L_block, a_block, bcs=[bc])
    assert A0.getType() != "nest"
    Anorm0 = A0.norm()
    bnorm0 = b0.norm()

    # Nested (MatNest)
    A1 = assemble_matrix_nest(a_block, bcs=[bc], mat_types=[["baij", "aij"], ["aij", ""]])
    A1.assemble()
    Anorm1 = nest_matrix_norm(A1)
    assert Anorm0 == pytest.approx(Anorm1, 1.0e-12)

    b1 = assemble_vector_nest(L_block)
    apply_lifting_nest(b1, a_block, bcs=[bc])
    for b_sub in b1.getNestSubVecs():
        b_sub.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
    bcs0 = bcs_by_block([L.function_spaces[0] for L in L_block], [bc])
    set_bc_nest(b1, bcs0)
    b1.assemble()

    bnorm1 = math.sqrt(sum([x.norm()**2 for x in b1.getNestSubVecs()]))
    assert bnorm0 == pytest.approx(bnorm1, 1.0e-12)

    # Monolithic version
    E = P0 * P1
    W = FunctionSpace(mesh, E)
    u0, u1 = ufl.TrialFunctions(W)
    v0, v1 = ufl.TestFunctions(W)
    a = inner(u0, v0) * dx + inner(u1, v1) * dx + inner(u0, v1) * dx + inner(
        u1, v0) * dx
    L = zero * inner(f, v0) * ufl.dx + inner(g, v1) * dx
    a, L = form(a), form(L)

    bdofsW_V1 = locate_dofs_topological(W.sub(1), mesh.topology.dim - 1, bndry_facets)
    bc = dirichletbc(u_bc, bdofsW_V1, W.sub(1))
    A2 = assemble_matrix(a, bcs=[bc])
    A2.assemble()
    b2 = assemble_vector(L)
    apply_lifting(b2, [a], bcs=[[bc]])
    b2.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
    set_bc(b2, [bc])
    assert A2.getType() != "nest"
    assert A2.norm() == pytest.approx(Anorm0, 1.0e-9)
    assert b2.norm() == pytest.approx(bnorm0, 1.0e-9)