Exemple #1
0
def train(cfg: Config, tub_paths: str, model: str, model_type: str) -> \
        tf.keras.callbacks.History:
    """
    Train the model
    """
    model_name, model_ext = os.path.splitext(model)
    is_tflite = model_ext == '.tflite'
    if is_tflite:
        model = f'{model_name}.h5'

    if not model_type:
        model_type = cfg.DEFAULT_MODEL_TYPE

    tubs = tub_paths.split(',')
    all_tub_paths = [os.path.expanduser(tub) for tub in tubs]
    output_path = os.path.expanduser(model)
    train_type = 'linear' if 'linear' in model_type else model_type

    kl = get_model_by_type(train_type, cfg)
    if cfg.PRINT_MODEL_SUMMARY:
        print(kl.model.summary())

    dataset = TubDataset(cfg, all_tub_paths)
    training_records, validation_records = dataset.train_test_split()
    print(f'Records # Training {len(training_records)}')
    print(f'Records # Validation {len(validation_records)}')

    training_pipe = BatchSequence(kl, cfg, training_records, is_train=True)
    validation_pipe = BatchSequence(kl,
                                    cfg,
                                    validation_records,
                                    is_train=False)

    dataset_train = training_pipe.create_tf_data().prefetch(
        tf.data.experimental.AUTOTUNE)
    dataset_validate = validation_pipe.create_tf_data().prefetch(
        tf.data.experimental.AUTOTUNE)
    train_size = len(training_pipe)
    val_size = len(validation_pipe)

    assert val_size > 0, "Not enough validation data, decrease the batch " \
                         "size or add more data."

    history = kl.train(model_path=output_path,
                       train_data=dataset_train,
                       train_steps=train_size,
                       batch_size=cfg.BATCH_SIZE,
                       validation_data=dataset_validate,
                       validation_steps=val_size,
                       epochs=cfg.MAX_EPOCHS,
                       verbose=cfg.VERBOSE_TRAIN,
                       min_delta=cfg.MIN_DELTA,
                       patience=cfg.EARLY_STOP_PATIENCE)

    if is_tflite:
        tf_lite_model_path = f'{os.path.splitext(output_path)[0]}.tflite'
        keras_model_to_tflite(output_path, tf_lite_model_path)

    return history
Exemple #2
0
def test_training_pipeline(config: Config, model_type: str,
                           train_filter: Callable[[TubRecord], bool]) -> None:
    """
    Testing consistency of the model interfaces and data used in training
    pipeline.

    :param config:                  donkey config
    :param model_type:              test specification of model type
    :param train_filter:            filter for records
    :return:                        None
    """
    kl = get_model_by_type(model_type, config)
    tub_dir = config.DATA_PATH_ALL if model_type in full_tub else \
        config.DATA_PATH
    # don't shuffle so we can identify data for testing
    config.TRAIN_FILTER = train_filter
    dataset = TubDataset(config, [tub_dir], seq_size=kl.seq_size())
    training_records, validation_records = \
        train_test_split(dataset.get_records(), shuffle=False,
                         test_size=(1. - config.TRAIN_TEST_SPLIT))
    seq = BatchSequence(kl, config, training_records, True)
    data_train = seq.create_tf_data()
    num_whole_batches = len(training_records) // config.BATCH_SIZE
    # this takes all batches into one list
    tf_batch = list(data_train.take(num_whole_batches).as_numpy_iterator())
    it = iter(training_records)
    for xy_batch in tf_batch:
        # extract x and y values from records, asymmetric in x and y b/c x
        # requires image manipulations
        batch_records = [next(it) for _ in range(config.BATCH_SIZE)]
        records_x = [
            kl.x_translate(kl.x_transform_and_process(r, normalize_image))
            for r in batch_records
        ]
        records_y = [kl.y_translate(kl.y_transform(r)) for r in batch_records]
        # from here all checks are symmetrical between x and y
        for batch, o_type, records \
                in zip(xy_batch, kl.output_types(), (records_x, records_y)):
            # check batch dictionary have expected keys
            assert batch.keys() == o_type.keys(), \
                'batch keys need to match models output types'
            # convert record values into arrays of batch size
            values = defaultdict(list)
            for r in records:
                for k, v in r.items():
                    values[k].append(v)
            # now convert arrays of floats or numpy arrays into numpy arrays
            np_dict = dict()
            for k, v in values.items():
                np_dict[k] = np.array(v)
            # compare record values with values from tf.data
            for k, v in batch.items():
                assert np.isclose(v, np_dict[k]).all()
Exemple #3
0
def train(cfg: Config, tub_paths: str, model: str = None,
          model_type: str = None, transfer: str = None, comment: str = None) \
        -> tf.keras.callbacks.History:
    """
    Train the model
    """
    database = PilotDatabase(cfg)
    model_name, model_num, train_type, is_tflite = \
        get_model_train_details(cfg, database, model, model_type)

    output_path = os.path.join(cfg.MODELS_PATH, model_name + '.h5')
    kl = get_model_by_type(train_type, cfg)
    if transfer:
        kl.load(transfer)
    if cfg.PRINT_MODEL_SUMMARY:
        print(kl.model.summary())

    tubs = tub_paths.split(',')
    all_tub_paths = [os.path.expanduser(tub) for tub in tubs]
    dataset = TubDataset(cfg, all_tub_paths)
    training_records, validation_records = dataset.train_test_split()
    print(f'Records # Training {len(training_records)}')
    print(f'Records # Validation {len(validation_records)}')

    training_pipe = BatchSequence(kl, cfg, training_records, is_train=True)
    validation_pipe = BatchSequence(kl,
                                    cfg,
                                    validation_records,
                                    is_train=False)

    dataset_train = training_pipe.create_tf_data().prefetch(
        tf.data.experimental.AUTOTUNE)
    dataset_validate = validation_pipe.create_tf_data().prefetch(
        tf.data.experimental.AUTOTUNE)
    train_size = len(training_pipe)
    val_size = len(validation_pipe)

    assert val_size > 0, "Not enough validation data, decrease the batch " \
                         "size or add more data."

    history = kl.train(model_path=output_path,
                       train_data=dataset_train,
                       train_steps=train_size,
                       batch_size=cfg.BATCH_SIZE,
                       validation_data=dataset_validate,
                       validation_steps=val_size,
                       epochs=cfg.MAX_EPOCHS,
                       verbose=cfg.VERBOSE_TRAIN,
                       min_delta=cfg.MIN_DELTA,
                       patience=cfg.EARLY_STOP_PATIENCE,
                       show_plot=cfg.SHOW_PLOT)

    if is_tflite:
        tf_lite_model_path = f'{os.path.splitext(output_path)[0]}.tflite'
        keras_model_to_tflite(output_path, tf_lite_model_path)

    database_entry = {
        'Number': model_num,
        'Name': model_name,
        'Type': str(kl),
        'Tubs': tub_paths,
        'Time': time(),
        'History': history.history,
        'Transfer': os.path.basename(transfer) if transfer else None,
        'Comment': comment,
        'Config': str(cfg)
    }
    database.add_entry(database_entry)
    database.write()

    return history
Exemple #4
0
    def plot_predictions(self, cfg, tub_paths, model_path, start, limit,
                         model_type):
        """
        Plot model predictions for angle and throttle against data from tubs.

        """
        import matplotlib.pyplot as plt
        import pandas as pd
        from pathlib import Path

        model_path = os.path.expanduser(model_path)
        model = dk.utils.get_model_by_type(model_type, cfg)
        # This just gets us the text for the plot title:
        if model_type is None:
            model_type = cfg.DEFAULT_MODEL_TYPE
        model.load(model_path)

        user_angles = []
        user_throttles = []
        pilot_angles = []
        pilot_throttles = []

        base_path = Path(os.path.expanduser(tub_paths)).absolute().as_posix()
        dataset = TubDataset(config=cfg,
                             tub_paths=[base_path],
                             seq_size=model.seq_size())
        records = dataset.get_records()
        num_records = len(records)
        if start > num_records:
            start = num_records - 1000
            limit = 1000
        if start + limit > num_records:
            limit = num_records - start
        records = records[start:start + limit]
        bar = IncrementalBar('Inferencing', max=len(records))

        for tub_record in records:
            inputs = model.x_transform_and_process(
                tub_record, lambda x: normalize_image(x))
            input_dict = model.x_translate(inputs)
            pilot_angle, pilot_throttle = \
                model.inference_from_dict(input_dict)
            user_angle, user_throttle = model.y_transform(tub_record)
            user_angles.append(user_angle)
            user_throttles.append(user_throttle)
            pilot_angles.append(pilot_angle)
            pilot_throttles.append(pilot_throttle)
            bar.next()

        angles_df = pd.DataFrame({
            'user_angle': user_angles,
            'pilot_angle': pilot_angles
        })
        throttles_df = pd.DataFrame({
            'user_throttle': user_throttles,
            'pilot_throttle': pilot_throttles
        })

        fig = plt.figure()

        title = f"Model Predictions\nTubs: {tub_paths}\nModel: {model_path}\n" \
                f"Type: {model_type}"
        fig.suptitle(title)

        # pandas DataFrame shift
        # https://stackoverflow.com/questions/10982089/how-to-shift-a-column-in-pandas-dataframe
        # you can add the empty row with something like: shift_pos = 1 and, df = df.append(pd.DataFrame([[np.nan for i in df.columns] for i in range(shift_pos)], columns=df.columns)) – epifanio Dec 29 '20 at 15:04
        angles_df = angles_df.append(
            pd.DataFrame([[np.nan for i in angles_df.columns]
                          for i in range(start + limit)],
                         columns=angles_df.columns))
        angles_df = angles_df.shift(periods=start + limit)
        throttles_df = throttles_df.append(
            pd.DataFrame([[np.nan for i in throttles_df.columns]
                          for i in range(start + limit)],
                         columns=throttles_df.columns))
        throttles_df = throttles_df.shift(periods=start + limit)

        ax1 = fig.add_subplot(211)
        ax2 = fig.add_subplot(212)

        angles_df.plot(ax=ax1)
        throttles_df.plot(ax=ax2)

        ax1.legend(loc=4)
        ax2.legend(loc=4)

        plt.savefig(f'{model_path}_pred_{start}_{start+limit}.png')
        logger.info(
            f'Saving model at {model_path}_pred_{start}_{start+limit}.png')
        plt.show()
Exemple #5
0
def train(cfg: Config, tub_paths: str, model: str = None,
          model_type: str = None, transfer: str = None, comment: str = None) \
        -> tf.keras.callbacks.History:
    """
    Train the model
    """
    database = PilotDatabase(cfg)
    if model_type is None:
        model_type = cfg.DEFAULT_MODEL_TYPE
    model_path, model_num = \
        get_model_train_details(database, model)

    base_path = os.path.splitext(model_path)[0]
    kl = get_model_by_type(model_type, cfg)
    if transfer:
        kl.load(transfer)
    if cfg.PRINT_MODEL_SUMMARY:
        print(kl.interpreter.model.summary())

    tubs = tub_paths.split(',')
    all_tub_paths = [os.path.expanduser(tub) for tub in tubs]
    dataset = TubDataset(config=cfg,
                         tub_paths=all_tub_paths,
                         seq_size=kl.seq_size())
    training_records, validation_records \
        = train_test_split(dataset.get_records(), shuffle=True,
                           test_size=(1. - cfg.TRAIN_TEST_SPLIT))
    print(f'Records # Training {len(training_records)}')
    print(f'Records # Validation {len(validation_records)}')

    # We need augmentation in validation when using crop / trapeze
    training_pipe = BatchSequence(kl, cfg, training_records, is_train=True)
    validation_pipe = BatchSequence(kl,
                                    cfg,
                                    validation_records,
                                    is_train=False)
    tune = tf.data.experimental.AUTOTUNE
    dataset_train = training_pipe.create_tf_data().prefetch(tune)
    dataset_validate = validation_pipe.create_tf_data().prefetch(tune)
    train_size = len(training_pipe)
    val_size = len(validation_pipe)

    ### training/validation length limit. Large validation datasets cause memory leaks.
    train_limit = cfg.TRAIN_LIMIT
    train_len = len(training_records)
    if train_limit is not None and train_len > train_limit:
        train_decrease = train_limit / train_len
        _train_size = math.ceil(train_size * train_decrease)
        print(f'train steps decrease from {train_size} to {_train_size}')
        train_size = _train_size

    val_limit = cfg.VALIDATION_LIMIT
    val_len = len(validation_records)
    if val_limit is not None and val_len > val_limit:
        val_decrease = val_limit / val_len
        _val_size = math.ceil(val_size * val_decrease)
        print(f'val steps decrease from {val_size} to {_val_size}')
        val_size = _val_size

    assert val_size > 0, "Not enough validation data, decrease the batch " \
                         "size or add more data."

    history = kl.train(model_path=model_path,
                       train_data=dataset_train,
                       train_steps=train_size,
                       batch_size=cfg.BATCH_SIZE,
                       validation_data=dataset_validate,
                       validation_steps=val_size,
                       epochs=cfg.MAX_EPOCHS,
                       verbose=cfg.VERBOSE_TRAIN,
                       min_delta=cfg.MIN_DELTA,
                       use_early_stop=cfg.USE_EARLY_STOP,
                       patience=cfg.EARLY_STOP_PATIENCE,
                       show_plot=cfg.SHOW_PLOT)

    if getattr(cfg, 'CREATE_TF_LITE', True):
        tf_lite_model_path = f'{base_path}.tflite'
        keras_model_to_tflite(model_path, tf_lite_model_path)

    if getattr(cfg, 'CREATE_TENSOR_RT', False):
        # load h5 (ie. keras) model
        model_rt = load_model(model_path)
        # save in tensorflow savedmodel format (i.e. directory)
        model_rt.save(f'{base_path}.savedmodel')
        # pass savedmodel to the rt converter
        saved_model_to_tensor_rt(f'{base_path}.savedmodel', f'{base_path}.trt')

    database_entry = {
        'Number': model_num,
        'Name': os.path.basename(base_path),
        'Type': str(kl),
        'Tubs': tub_paths,
        'Time': time(),
        'History': history.history,
        'Transfer': os.path.basename(transfer) if transfer else None,
        'Comment': comment,
        'Config': str(cfg)
    }
    database.add_entry(database_entry)
    database.write()

    return history