Exemple #1
0
def population_generator():
    # households_data_dirty, person_data_dirty = load_household_and_population_dfs()
    safe_mkdir(OUTPUT_DIR)
    pumas_to_go = set(sorted(puma_df_clean.values.tolist()))
    total_pumas = len(pumas_to_go)
    completed = []
    for puma in puma_df_clean:
        gen_puma = 'state_{}_puma_{}_households.csv'.format(STATE, puma)
        if gen_puma in os.listdir(OUTPUT_DIR):
            completed.append(puma)
            pumas_to_go.remove(puma)
    print("Already completed {} of {} pumas: {}".format(
        len(completed), total_pumas, ",".join(sorted(completed))))
    print("{} pumas remaining: {}".format(len(pumas_to_go),
                                          ",".join(sorted(pumas_to_go))))

    puma_tract_mappings = 'input/sample_data/2010_puma_tract_mapping.txt'
    configuration = Configuration.from_file('input/sample_data/config.json')
    preprocessor = Preprocessor.from_config(configuration.preprocessing_config)
    households_raw_data = PumsData.from_csv(
        'output/{}/household_pums_data.csv'.format(AOI_NAME))
    persons_raw_data = PumsData.from_csv(
        'output/{}/person_pums_data.csv'.format(AOI_NAME))
    results = [
        _generate_for_puma_data(households_raw_data, persons_raw_data,
                                preprocessor, puma_tract_mappings, puma_id)
        for puma_id in pumas_to_go
    ]

    sum(results)
Exemple #2
0
 def test_binning_generator(self):
     bins = [0, 20000, 40000, 60000]
     config = {'test_input': {'bins': bins}}
     preprocessor = Preprocessor.from_config(config)
     preprocess = preprocessor.input_to_preprocessor['test_input']
     self.assertEqual(preprocess(0), '<=0')
     self.assertEqual(preprocess(10000), '0-20000')
     self.assertEqual(preprocess(100000), '60000+')
Exemple #3
0
 def test_clean_data_one_field(self):
     pums_data = datasource.PumsData(
         pandas.DataFrame(self._mock_dirty_household_input()))
     cleaned = pums_data.clean([inputs.NUM_PEOPLE.name], Preprocessor())
     actual = cleaned.data.loc[1].to_dict()
     expected = {
         inputs.NUM_PEOPLE.name: '2',
     }
     self.assertDictEqual(actual, expected)
def population_generator():
    # households_data_dirty, person_data_dirty = load_household_and_population_dfs()
    pumas_to_go = set(puma_df_clean.values.tolist())

    for puma in puma_df_clean:
        gen_puma = 'state_{}_puma_{}_households.csv'.format(STATE, puma)
        if gen_puma in os.listdir(output_dir):
            print(puma)
            pumas_to_go.remove(puma)

    puma_tract_mappings = 'input/2010_puma_tract_mapping.txt'
    configuration = Configuration.from_file('input/config.json')
    preprocessor = Preprocessor.from_config(configuration.preprocessing_config)

    for puma_id in pumas_to_go:
        households_data = PumsData.from_csv('input/{}_household_pums_data.csv'.format(AOI_NAME)).clean(household_fields,
                                                                                                       preprocessor,
                                                                                                       state=str(
                                                                                                           int(STATE)),
                                                                                                       puma=str(int(
                                                                                                           puma_id)))
        persons_data = PumsData.from_csv('input/{}_person_pums_data.csv'.format(AOI_NAME)).clean(persons_fields,
                                                                                                 preprocessor,
                                                                                                 state=str(int(STATE)),
                                                                                                 puma=str(int(puma_id)))
        person_segmenter = lambda x: None
        household_segmenter = lambda x: None
        print("loaded")

        household_model, person_model = create_bayes_net(
            STATE, puma_id, output_dir,
            households_data, persons_data, configuration,
            person_segmenter, household_segmenter
        )

        marginals, allocator = download_tract_data(
            STATE, puma_id, output_dir, census_api_key, puma_tract_mappings,
            households_data, persons_data
        )

        print('Allocated {}'.format(puma_id))
        population = generate_synthetic_people_and_households(
            STATE, puma_id, output_dir, allocator,
            person_model, household_model
        )

        print('Generated {}'.format(puma_id))
        accuracy = Accuracy.from_doppelganger(
            cleaned_data_persons=persons_data,
            cleaned_data_households=households_data,
            marginal_data=marginals,
            population=population
        )

        logging.info('Absolute Percent Error for state {}, and puma {}: {}'.format(STATE, puma_id,
                                                                                   accuracy.absolute_pct_error().mean()))
    _combine_and_synthesize()
 def test_clean_data_filter_length(self):
     pums_data = datasource.PumsData(
         pandas.DataFrame(self._mock_dirty_household_puma_state_input()))
     field_names = [
         inputs.SERIAL_NUMBER.name, inputs.STATE.name, inputs.PUMA.name
     ]
     cleaned = pums_data.clean(field_names, Preprocessor())
     cleaned_state = pums_data.clean(field_names,
                                     Preprocessor(),
                                     state='06')
     cleaned_puma = pums_data.clean(field_names,
                                    Preprocessor(),
                                    puma='00106')
     cleaned_both = pums_data.clean(field_names,
                                    Preprocessor(),
                                    state='06',
                                    puma='00106')
     self.assertEqual(len(cleaned.data), 3)
     self.assertEqual(len(cleaned_state.data), 2)
     self.assertEqual(len(cleaned_puma.data), 2)
     self.assertEqual(len(cleaned_both.data), 1)
 def test_prior_creation(self):
     all_values = bayesnets.generate_laplace_prior_data(
         (inputs.AGE.name, inputs.SEX.name), Preprocessor())
     expected = {
         ('0-17', 'M'),
         ('18-34', 'M'),
         ('35-64', 'M'),
         ('65+', 'M'),
         ('0-17', 'F'),
         ('18-34', 'F'),
         ('35-64', 'F'),
         ('65+', 'F'),
     }
     self.assertSetEqual(expected, all_values)
Exemple #7
0
 def test_clean_data(self):
     pums_data = datasource.PumsData(
         pandas.DataFrame(self._mock_dirty_household_input()))
     cleaned = pums_data.clean([
         inputs.SERIAL_NUMBER.name, inputs.NUM_PEOPLE.name,
         inputs.NUM_VEHICLES.name, inputs.HOUSEHOLD_INCOME.name
     ], Preprocessor())
     actual = cleaned.data.loc[1].to_dict()
     expected = {
         inputs.SERIAL_NUMBER.name: 'b',
         inputs.NUM_PEOPLE.name: '2',
         inputs.NUM_VEHICLES.name: '3+',
         inputs.HOUSEHOLD_INCOME.name: '40000+'
     }
     self.assertDictEqual(actual, expected)
def fetch_pums_data(state_id, puma_id, configuration, db_host, db_database,
                    db_schema, db_user, db_password):
    '''Download PUMS data from pums tables stored in a database
    Args:
        state_id: 2-digit state fips code
        puma_id: 5-digit puma code
        configuration: contains person and household fields, along with how to instruct the
            preprocessor to discretize the fields
        db_host: hostname of the POSTGRESQL instance to connect to
        db_database: database name to connect to
        db_schema: schema which _must_ contain a person and household table with pums fields
            referenced in doppelganger/inputs.py
        db_user: username to connect with
        db_password: password to authenticate to the database

    Returns:
        person_data: a PumsData wrapped dataframe whose fields have been mapped according to
            inputs.py
        households_data: same as person_data but for households
    '''

    preprocessor = Preprocessor.from_config(configuration.preprocessing_config)

    # Union default and extra fields
    person_fields = link_fields_to_inputs(configuration.person_fields)
    person_fields = allocation.DEFAULT_PERSON_FIELDS.union(person_fields)
    person_fieldnames = tuple(set(p.name for p in person_fields))

    household_fields = link_fields_to_inputs(configuration.household_fields)
    household_fields = allocation.DEFAULT_HOUSEHOLD_FIELDS.union(
        household_fields)
    household_fieldnames = tuple(set(hh.name for hh in household_fields))

    puma_conn = None
    try:
        puma_conn = psycopg2.connect(
            host=db_host,
            database=db_database,
            user=db_user,
            password=db_password,
        )

        households_data = datasource.PumsData.from_database(
            conn=puma_conn,
            state_id=state_id,
            puma_id=puma_id,
            schema_name=db_schema,
            table_name=HOUSEHOLD_TABLE,
            fields=household_fields).clean(field_names=household_fieldnames,
                                           preprocessor=preprocessor,
                                           state=state_id,
                                           puma=puma_id)

        persons_data = datasource.PumsData.from_database(
            conn=puma_conn,
            state_id=state_id,
            puma_id=puma_id,
            schema_name=db_schema,
            table_name=PERSONS_TABLE,
            fields=person_fields).clean(field_names=person_fieldnames,
                                        preprocessor=preprocessor,
                                        state=state_id,
                                        puma=puma_id)

    except psycopg2.DatabaseError as error:
        print(error)
    finally:
        if puma_conn is not None:
            puma_conn.close()
            print('Database connection closed.')

    return households_data, persons_data