def create_model(model_name, num_classes=1000, pretrained=False, **kwargs):
    if 'test_time_pool' in kwargs:
        test_time_pool = kwargs.pop('test_time_pool')
    else:
        test_time_pool = True
    if 'extra' in kwargs:
        extra = kwargs.pop('extra')
    else:
        extra = True
    if model_name == 'dpn68':
        model = dpn68(num_classes=num_classes,
                      pretrained=pretrained,
                      test_time_pool=test_time_pool)
    elif model_name == 'dpn68b':
        model = dpn68b(num_classes=num_classes,
                       pretrained=pretrained,
                       test_time_pool=test_time_pool)
    elif model_name == 'dpn92':
        model = dpn92(num_classes=num_classes,
                      pretrained=pretrained,
                      test_time_pool=test_time_pool,
                      extra=extra)
    elif model_name == 'dpn98':
        model = dpn98(num_classes=num_classes,
                      pretrained=pretrained,
                      test_time_pool=test_time_pool)
    elif model_name == 'dpn131':
        model = dpn131(num_classes=num_classes,
                       pretrained=pretrained,
                       test_time_pool=test_time_pool)
    elif model_name == 'dpn107':
        model = dpn107(num_classes=num_classes,
                       pretrained=pretrained,
                       test_time_pool=test_time_pool)
    elif model_name == 'resnet18':
        model = resnet18(num_classes=num_classes,
                         pretrained=pretrained,
                         **kwargs)
    elif model_name == 'resnet34':
        model = resnet34(num_classes=num_classes,
                         pretrained=pretrained,
                         **kwargs)
    elif model_name == 'resnet50':
        model = resnet50(num_classes=num_classes,
                         pretrained=pretrained,
                         **kwargs)
    elif model_name == 'resnet101':
        model = resnet101(num_classes=num_classes,
                          pretrained=pretrained,
                          **kwargs)
    elif model_name == 'resnet152':
        model = resnet152(num_classes=num_classes,
                          pretrained=pretrained,
                          **kwargs)
    elif model_name == 'densenet121':
        model = densenet121(num_classes=num_classes,
                            pretrained=pretrained,
                            **kwargs)
    elif model_name == 'densenet161':
        model = densenet161(num_classes=num_classes,
                            pretrained=pretrained,
                            **kwargs)
    elif model_name == 'densenet169':
        model = densenet169(num_classes=num_classes,
                            pretrained=pretrained,
                            **kwargs)
    elif model_name == 'densenet201':
        model = densenet201(num_classes=num_classes,
                            pretrained=pretrained,
                            **kwargs)
    elif model_name == 'inception_v3':
        model = inception_v3(num_classes=num_classes,
                             pretrained=pretrained,
                             transform_input=False,
                             **kwargs)
    else:
        assert False, "Unknown model architecture (%s)" % model_name
    return model
Exemple #2
0
from dpn import dpn68, dpn68b, dpn92, dpn98, dpn131, dpn107
from sotabench.image_classification import ImageNet
import torchvision.transforms as transforms
import PIL

normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                 std=[0.229, 0.224, 0.225])
input_transform = transforms.Compose([
    transforms.Resize(256, PIL.Image.BICUBIC),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    normalize,
])
ImageNet.benchmark(model=dpn131(pretrained=True),
                   paper_model_name='DPN-131 x224',
                   paper_arxiv_id='1707.01629',
                   paper_pwc_id='dual-path-networks',
                   input_transform=input_transform,
                   batch_size=256,
                   num_gpu=1)