Exemple #1
0
    def _call(self, _inp, output_size, is_training):
        batch_size = tf.shape(_inp)[0]
        H, W, B, A = tuple(int(i) for i in _inp.shape[1:])

        if self.embedding is None:
            self.embedding = tf.get_variable("embedding",
                                             shape=(int(A / 2),
                                                    self.n_objects),
                                             dtype=tf.float32)

        inp = tf.reshape(_inp, (batch_size, H * W * B, A))
        key, value = tf.split(inp, 2, axis=2)
        raw_attention = tf.tensordot(key, self.embedding, [[2], [0]])
        attention = tf.nn.softmax(raw_attention, axis=1)

        attention_t = tf.transpose(attention, (0, 2, 1))
        weighted_value = tf.matmul(attention_t, value)

        flat_weighted_value = tf.reshape(
            weighted_value, (batch_size, self.n_objects * int(A / 2)))

        if self.output_network is None:
            self.output_network = cfg.build_math_output(scope="math_output")

        return self.output_network(flat_weighted_value, output_size,
                                   is_training)
Exemple #2
0
    def _call(self, inp, output_size, is_training):
        if self.cell is None:
            self.cell = cfg.build_math_cell(scope="regression_cell")
        if self.output_network is None:
            self.output_network = cfg.build_math_output(scope="math_output")

        if self.use_mask:
            final_dim = int(inp.shape[-1])
            mask, inp = tf.split(inp, (1, final_dim - 1), axis=-1)
            inp, n_on, _ = apply_mask_and_group_at_front(inp, mask)
        else:
            batch_size = tf.shape(inp)[0]
            n_objects = np.prod(inp.shape[1:-1])
            A = inp.shape[-1]
            inp = tf.reshape(inp, (batch_size, n_objects, A))

        batch_size = tf.shape(inp)[0]
        output, final_state = tf.nn.dynamic_rnn(
            self.cell,
            inp,
            initial_state=self.cell.zero_state(batch_size, tf.float32),
            parallel_iterations=1,
            swap_memory=False,
            time_major=False)

        if self.use_mask:
            # Get the output at the end of each sequence.
            indices = tf.stack([tf.range(batch_size), n_on - 1], axis=1)
            output = tf.gather_nd(output, indices)
        else:
            output = output[:, -1, :]

        return self.output_network(output, output_size, is_training)
Exemple #3
0
    def _call(self, _inp, output_size, is_training):
        if self.h_cell is None:
            self.h_cell = cfg.build_math_cell(scope="regression_h_cell")
            self.w_cell = cfg.build_math_cell(scope="regression_w_cell")
            self.b_cell = cfg.build_math_cell(scope="regression_b_cell")

        edge_state = self.h_cell.zero_state(tf.shape(_inp)[0], tf.float32)

        H, W, B = tuple(int(i) for i in _inp.shape[1:4])
        h_states = np.empty((H, W, B), dtype=np.object)
        w_states = np.empty((H, W, B), dtype=np.object)
        b_states = np.empty((H, W, B), dtype=np.object)

        for h in range(H):
            for w in range(W):
                for b in range(B):
                    h_state = h_states[h - 1, w, b] if h > 0 else edge_state
                    w_state = w_states[h, w - 1, b] if w > 0 else edge_state
                    b_state = b_states[h, w, b - 1] if b > 0 else edge_state

                    inp = _inp[:, h, w, b, :]

                    h_inp = tf.concat([inp, w_state.h, b_state.h], axis=1)
                    _, h_states[h, w, b] = self.h_cell(h_inp, h_state)

                    w_inp = tf.concat([inp, h_state.h, b_state.h], axis=1)
                    _, w_states[h, w, b] = self.w_cell(w_inp, w_state)

                    b_inp = tf.concat([inp, h_state.h, w_state.h], axis=1)
                    _, b_states[h, w, b] = self.b_cell(b_inp, b_state)

        if self.output_network is None:
            self.output_network = cfg.build_math_output(scope="math_output")

        final_layer_input = tf.concat([
            h_states[-1, -1, -1].h, w_states[-1, -1, -1].h, b_states[-1, -1,
                                                                     -1].h
        ],
                                      axis=1)

        return self.output_network(final_layer_input, output_size, is_training)