Exemple #1
0
def inference_time():
    seq_name = './data/DROWv2-data/test/run_t_2015-11-26-11-55-45.bag.csv'
    scans = np.genfromtxt(seq_name, delimiter=',')[:, 2:]

    # inference time
    use_gpu = True
    model_names = ("DR-SPAAM", "DROW", "DROW-T5")
    ckpts = ("./ckpts/dr_spaam_e40.pth", "./ckpts/drow_e40.pth",
             "./ckpts/drow5_e40.pth")
    for model_name, ckpt in zip(model_names, ckpts):
        detector = Detector(model_name=model_name,
                            ckpt_file=ckpt,
                            gpu=use_gpu,
                            stride=1)
        detector.set_laser_spec(angle_inc=np.radians(0.5), num_pts=450)

        t_list = []
        for i in range(60):
            s = scans[i:i + 5] if model_name == "DROW-T5" else scans[i]
            t0 = time.time()
            dets_xy, dets_cls, instance_mask = detector(s)
            t_list.append(1e3 * (time.time() - t0))

        t = np.array(t_list[10:]).mean()
        print("inference time (model: %s, gpu: %s): %f ms (%.1f FPS)" %
              (model_name, use_gpu, t, 1e3 / t))
Exemple #2
0
 def __init__(self):
     self._read_params()
     self._detector = Detector(model_name="DR-SPAAM",
                               ckpt_file=self.weight_file,
                               gpu=True,
                               stride=self.stride)
     self._init()
Exemple #3
0
 def __init__(self):
     self._read_params()
     self._detector = Detector(
         self.weight_file,
         model=self.detector_model,
         gpu=True,
         stride=self.stride,
         panoramic_scan=self.panoramic_scan,
     )
     self._init()
 def __init__(self):
     self._read_params()
     self._detector = Detector(
         self.weight_file,
         model=self.detector_model,
         gpu=torch.cuda.is_available(),
         stride=self.stride,
         panoramic_scan=self.panoramic_scan,
     )
     self._init()
class DrSpaamDetector:
    def __init__(self,
                 num_pts,
                 ang_inc_degree=0.5,
                 tracking=False,
                 gpu=True,
                 ckpt=default_ckpts):
        # Detector class wraps up preprocessing, inference, and postprocessing for DR-SPAAM.
        # Checkout the comment in the code for meanings of the parameters.
        if not os.path.exists(ckpt):
            raise ValueError("the checkpoint file for DR-SPAAM is not valid")
        self.detector = Detector(model_name="DR-SPAAM",
                                 ckpt_file=ckpt,
                                 gpu=gpu,
                                 stride=1,
                                 tracking=tracking)

        # set angular grid (this is only required once)
        ang_inc = np.radians(
            ang_inc_degree)  # angular increment of the scanner
        # num_pts = 450  # number of points in a scan
        self.detector.set_laser_spec(ang_inc, num_pts)

    def detect(self, scan):
        """
        :param scan: 1D numpy array with positive values
        :return:
        """
        dets_xy, dets_cls, instance_mask = self.detector(scan)  # get detection

        if len(dets_xy):
            dets_xy = np.stack([dets_xy[:, 1], dets_xy[:, 0]]).T

        # confidence threshold
        cls_thresh = 0.2
        cls_mask = dets_cls.squeeze() > cls_thresh
        dets_xy = dets_xy[cls_mask]
        dets_cls = dets_cls[cls_mask]

        return dets_xy, dets_cls

    def get_tracklets(self):
        tracklets = self.detector.get_tracklets()
        return [[np.stack(tr)[:, ::-1] for tr in tracklets[0]], tracklets[1]]
    def __init__(self,
                 num_pts,
                 ang_inc_degree=0.5,
                 tracking=False,
                 gpu=True,
                 ckpt=default_ckpts):
        # Detector class wraps up preprocessing, inference, and postprocessing for DR-SPAAM.
        # Checkout the comment in the code for meanings of the parameters.
        if not os.path.exists(ckpt):
            raise ValueError("the checkpoint file for DR-SPAAM is not valid")
        self.detector = Detector(model_name="DR-SPAAM",
                                 ckpt_file=ckpt,
                                 gpu=gpu,
                                 stride=1,
                                 tracking=tracking)

        # set angular grid (this is only required once)
        ang_inc = np.radians(
            ang_inc_degree)  # angular increment of the scanner
        # num_pts = 450  # number of points in a scan
        self.detector.set_laser_spec(ang_inc, num_pts)
def test_inference_speed_on_jrdb():
    data_handle = JRDBHandle(
        split="train",
        cfg={
            "data_dir": "./data/JRDB",
            "num_scans": 1,
            "scan_stride": 1
        },
    )

    ckpt_file = "./ckpts/ckpt_jrdb_ann_drow3_e40.pth"
    detector_drow3 = Detector(ckpt_file,
                              model="DROW3",
                              gpu=True,
                              stride=_STRIDE,
                              panoramic_scan=True)
    detector_drow3.set_laser_fov(360)

    ckpt_file = "./ckpts/ckpt_jrdb_ann_dr_spaam_e20.pth"
    detector_dr_spaam = Detector(ckpt_file,
                                 model="DR-SPAAM",
                                 gpu=True,
                                 stride=_STRIDE,
                                 panoramic_scan=True)
    detector_dr_spaam.set_laser_fov(360)

    frame_inds = np.random.randint(0, len(data_handle), size=(_FRAME_NUM, ))

    # sample random frames, discard beginning frames, where PyTorch is searching
    # for optimal algorithm
    frame_inds = np.random.randint(0,
                                   len(data_handle),
                                   size=(_FRAME_NUM + 20, ))

    for n, detector in zip(["DROW3", "DR-SPAAM"],
                           [detector_drow3, detector_dr_spaam]):
        t_list = []
        for frame_idx in frame_inds:
            data_dict = data_handle[frame_idx]
            scan_r = data_dict["laser_data"][-1, ::-1]  # to DROW frame

            t0 = time.time()
            dets_xy, dets_cls, _ = detector(scan_r)
            t_list.append(time.time() - t0)

        t_ave = np.array(t_list[20:]).mean()
        print(f"{n} on JRDB: {1.0 / t_ave:.1f} FPS "
              f"({t_ave:.6f} seconds per frame)")
Exemple #8
0
def play_sequence():
    # scans
    seq_name = './data/DROWv2-data/test/run_t_2015-11-26-11-22-03.bag.csv'
    # seq_name = './data/DROWv2-data/val/run_2015-11-26-15-52-55-k.bag.csv'
    scans_data = np.genfromtxt(seq_name, delimiter=',')
    scans_t = scans_data[:, 1]
    scans = scans_data[:, 2:]
    scan_phi = u.get_laser_phi()

    # odometry, used only for plotting
    odo_name = seq_name[:-3] + 'odom2'
    odos = np.genfromtxt(odo_name, delimiter=',')
    odos_t = odos[:, 1]
    odos_phi = odos[:, 4]

    # detector
    ckpt = './ckpts/dr_spaam_e40.pth'
    detector = Detector(model_name="DR-SPAAM",
                        ckpt_file=ckpt,
                        gpu=True,
                        stride=1)
    detector.set_laser_spec(angle_inc=np.radians(0.5), num_pts=450)

    # scanner location
    rad_tmp = 0.5 * np.ones(len(scan_phi), dtype=np.float)
    xy_scanner = u.rphi_to_xy(rad_tmp, scan_phi)
    xy_scanner = np.stack(xy_scanner, axis=1)

    # plot
    fig = plt.figure(figsize=(10, 10))
    ax = fig.add_subplot(111)

    _break = False

    def p(event):
        nonlocal _break
        _break = True

    fig.canvas.mpl_connect('key_press_event', p)

    # video sequence
    odo_idx = 0
    for i in range(len(scans)):
        # for i in range(0, len(scans), 20):
        plt.cla()

        ax.set_aspect('equal')
        ax.set_xlim(-15, 15)
        ax.set_ylim(-15, 15)

        # ax.set_title('Frame: %s' % i)
        ax.set_title('Press any key to exit.')
        ax.axis("off")

        # find matching odometry
        while odo_idx < len(odos_t) - 1 and odos_t[odo_idx] < scans_t[i]:
            odo_idx += 1
        odo_phi = odos_phi[odo_idx]
        odo_rot = np.array(
            [[np.cos(odo_phi), np.sin(odo_phi)],
             [-np.sin(odo_phi), np.cos(odo_phi)]],
            dtype=np.float32)

        # plot scanner location
        xy_scanner_rot = np.matmul(xy_scanner, odo_rot.T)
        ax.plot(xy_scanner_rot[:, 0], xy_scanner_rot[:, 1], c='black')
        ax.plot((0, xy_scanner_rot[0, 0] * 1.0),
                (0, xy_scanner_rot[0, 1] * 1.0),
                c='black')
        ax.plot((0, xy_scanner_rot[-1, 0] * 1.0),
                (0, xy_scanner_rot[-1, 1] * 1.0),
                c='black')

        # plot points
        scan = scans[i]
        scan_x, scan_y = u.rphi_to_xy(scan, scan_phi + odo_phi)
        ax.scatter(scan_x, scan_y, s=1, c='blue')

        # inference
        dets_xy, dets_cls, instance_mask = detector(scan)

        # plot detection
        dets_xy_rot = np.matmul(dets_xy, odo_rot.T)
        cls_thresh = 0.5
        for j in range(len(dets_xy)):
            if dets_cls[j] < cls_thresh:
                continue
            # c = plt.Circle(dets_xy_rot[j], radius=0.5, color='r', fill=False)
            c = plt.Circle(dets_xy_rot[j],
                           radius=0.5,
                           color='r',
                           fill=False,
                           linewidth=2)
            ax.add_artist(c)

        # plt.savefig('/home/dan/tmp/det_img/frame_%04d.png' % i)

        plt.pause(0.001)

        if _break:
            break
Exemple #9
0
def play_sequence_with_tracking():
    # scans
    seq_name = './data/DROWv2-data/train/lunch_2015-11-26-12-04-23.bag.csv'
    seq0, seq1 = 109170, 109360
    scans, scans_t = [], []
    with open(seq_name) as f:
        for line in f:
            scan_seq, scan_t, scan = line.split(",", 2)
            scan_seq = int(scan_seq)
            if scan_seq < seq0:
                continue
            scans.append(np.fromstring(scan, sep=','))
            scans_t.append(float(scan_t))
            if scan_seq > seq1:
                break
    scans = np.stack(scans, axis=0)
    scans_t = np.array(scans_t)
    scan_phi = u.get_laser_phi()

    # odometry, used only for plotting
    odo_name = seq_name[:-3] + 'odom2'
    odos = np.genfromtxt(odo_name, delimiter=',')
    odos_t = odos[:, 1]
    odos_phi = odos[:, 4]

    # detector
    ckpt = './ckpts/dr_spaam_e40.pth'
    detector = Detector(model_name="DR-SPAAM",
                        ckpt_file=ckpt,
                        gpu=True,
                        stride=1,
                        tracking=True)
    detector.set_laser_spec(angle_inc=np.radians(0.5), num_pts=450)

    # scanner location
    rad_tmp = 0.5 * np.ones(len(scan_phi), dtype=np.float)
    xy_scanner = u.rphi_to_xy(rad_tmp, scan_phi)
    xy_scanner = np.stack(xy_scanner, axis=1)

    # plot
    fig = plt.figure(figsize=(6, 8))
    ax = fig.add_subplot(111)

    _break = False

    def p(event):
        nonlocal _break
        _break = True

    fig.canvas.mpl_connect('key_press_event', p)

    # video sequence
    odo_idx = 0
    for i in range(len(scans)):
        plt.cla()

        ax.set_aspect('equal')
        ax.set_xlim(-10, 5)
        ax.set_ylim(-5, 15)

        # ax.set_title('Frame: %s' % i)
        ax.set_title('Press any key to exit.')
        ax.axis("off")

        # find matching odometry
        while odo_idx < len(odos_t) - 1 and odos_t[odo_idx] < scans_t[i]:
            odo_idx += 1
        odo_phi = odos_phi[odo_idx]
        odo_rot = np.array(
            [[np.cos(odo_phi), np.sin(odo_phi)],
             [-np.sin(odo_phi), np.cos(odo_phi)]],
            dtype=np.float32)

        # plot scanner location
        xy_scanner_rot = np.matmul(xy_scanner, odo_rot.T)
        ax.plot(xy_scanner_rot[:, 0], xy_scanner_rot[:, 1], c='black')
        ax.plot((0, xy_scanner_rot[0, 0] * 1.0),
                (0, xy_scanner_rot[0, 1] * 1.0),
                c='black')
        ax.plot((0, xy_scanner_rot[-1, 0] * 1.0),
                (0, xy_scanner_rot[-1, 1] * 1.0),
                c='black')

        # plot points
        scan = scans[i]
        scan_x, scan_y = u.rphi_to_xy(scan, scan_phi + odo_phi)
        ax.scatter(scan_x, scan_y, s=1, c='blue')

        # inference
        dets_xy, dets_cls, instance_mask = detector(scan)

        # plot detection
        dets_xy_rot = np.matmul(dets_xy, odo_rot.T)
        cls_thresh = 0.3
        for j in range(len(dets_xy)):
            if dets_cls[j] < cls_thresh:
                continue
            c = plt.Circle(dets_xy_rot[j],
                           radius=0.5,
                           color='r',
                           fill=False,
                           linewidth=2)
            ax.add_artist(c)

        # plot track
        cls_thresh = 0.2
        tracks, tracks_cls = detector.get_tracklets()
        for t, tc in zip(tracks, tracks_cls):
            if tc >= cls_thresh and len(t) > 1:
                t_rot = np.matmul(t, odo_rot.T)
                ax.plot(t_rot[:, 0], t_rot[:, 1], color='g', linewidth=2)

        # plt.savefig('/home/dan/tmp/track3_img/frame_%04d.png' % i)

        plt.pause(0.001)

        if _break:
            break
Exemple #10
0
class DrSpaamROS:
    """ROS node to detect pedestrian using DROW3 or DR-SPAAM."""
    def __init__(self):
        self._read_params()
        self._detector = Detector(
            self.weight_file,
            model=self.detector_model,
            gpu=True,
            stride=self.stride,
            panoramic_scan=self.panoramic_scan,
        )
        self._init()

    def _read_params(self):
        """
        @brief      Reads parameters from ROS server.
        """
        self.weight_file = rospy.get_param("~weight_file")
        self.conf_thresh = rospy.get_param("~conf_thresh")
        self.stride = rospy.get_param("~stride")
        self.detector_model = rospy.get_param("~detector_model")
        self.panoramic_scan = rospy.get_param("~panoramic_scan")

    def _init(self):
        """
        @brief      Initialize ROS connection.
        """
        # Publisher
        topic, queue_size, latch = read_publisher_param("detections")
        self._dets_pub = rospy.Publisher(topic,
                                         PoseArray,
                                         queue_size=queue_size,
                                         latch=latch)

        topic, queue_size, latch = read_publisher_param("rviz")
        self._rviz_pub = rospy.Publisher(topic,
                                         Marker,
                                         queue_size=queue_size,
                                         latch=latch)

        # Subscriber
        topic, queue_size = read_subscriber_param("scan")
        self._scan_sub = rospy.Subscriber(topic,
                                          LaserScan,
                                          self._scan_callback,
                                          queue_size=queue_size)

    def _scan_callback(self, msg):
        if (self._dets_pub.get_num_connections() == 0
                and self._rviz_pub.get_num_connections() == 0):
            return

        # TODO check the computation here
        if not self._detector.is_ready():
            self._detector.set_laser_fov(
                np.rad2deg(msg.angle_increment * len(msg.ranges)))

        scan = np.array(msg.ranges)
        scan[scan == 0.0] = 29.99
        scan[np.isinf(scan)] = 29.99
        scan[np.isnan(scan)] = 29.99

        # t = time.time()
        dets_xy, dets_cls, _ = self._detector(scan)
        # print("[DrSpaamROS] End-to-end inference time: %f" % (t - time.time()))

        # confidence threshold
        conf_mask = (dets_cls >= self.conf_thresh).reshape(-1)
        dets_xy = dets_xy[conf_mask]
        dets_cls = dets_cls[conf_mask]

        # convert to ros msg and publish
        dets_msg = detections_to_pose_array(dets_xy, dets_cls)
        dets_msg.header = msg.header
        self._dets_pub.publish(dets_msg)

        rviz_msg = detections_to_rviz_marker(dets_xy, dets_cls)
        rviz_msg.header = msg.header
        self._rviz_pub.publish(rviz_msg)
Exemple #11
0
class DrSpaamROS():
    """ROS node to detect pedestrian using DR-SPAAM."""
    def __init__(self):
        self._read_params()
        self._detector = Detector(model_name="DR-SPAAM",
                                  ckpt_file=self.weight_file,
                                  gpu=True,
                                  stride=self.stride)
        self._init()

    def _read_params(self):
        """
        @brief      Reads parameters from ROS server.
        """
        self.weight_file = rospy.get_param("~weight_file")
        self.conf_thresh = rospy.get_param("~conf_thresh")
        self.stride = rospy.get_param("~stride")

    def _init(self):
        """
        @brief      Initialize ROS connection.
        """
        # Publisher
        topic, queue_size, latch = read_publisher_param("detections")
        self._dets_pub = rospy.Publisher(topic,
                                         PoseArray,
                                         queue_size=queue_size,
                                         latch=latch)

        topic, queue_size, latch = read_publisher_param("rviz")
        self._rviz_pub = rospy.Publisher(topic,
                                         Marker,
                                         queue_size=queue_size,
                                         latch=latch)

        # Subscriber
        topic, queue_size = read_subscriber_param("scan")
        self._scan_sub = rospy.Subscriber(topic,
                                          LaserScan,
                                          self._scan_callback,
                                          queue_size=queue_size)

    def _scan_callback(self, msg):
        if self._dets_pub.get_num_connections() == 0:
            return

        if not self._detector.laser_spec_set():
            self._detector.set_laser_spec(angle_inc=msg.angle_increment,
                                          num_pts=len(msg.ranges))

        scan = np.array(msg.ranges)
        scan[scan == 0.0] = 29.99
        scan[np.isinf(scan)] = 29.99
        scan[np.isnan(scan)] = 29.99

        # t = time.time()
        dets_xy, dets_cls, _ = self._detector(scan)
        # print("[DrSpaamROS] End-to-end inference time: %f" % (t - time.time()))

        # confidence threshold
        conf_mask = (dets_cls >= self.conf_thresh).reshape(-1)
        # if not np.sum(conf_mask) > 0:
        #     return
        dets_xy = dets_xy[conf_mask]
        dets_cls = dets_cls[conf_mask]

        # convert and publish ros msg
        dets_msg = detections_to_pose_array(dets_xy, dets_cls)
        dets_msg.header = msg.header
        self._dets_pub.publish(dets_msg)

        rviz_msg = detections_to_rviz_marker(dets_xy, dets_cls)
        rviz_msg.header = msg.header
        self._rviz_pub.publish(rviz_msg)
Exemple #12
0
def test_detector():
    data_handle = JRDBHandle(
        split="train",
        cfg={
            "data_dir": "./data/JRDB",
            "num_scans": 10,
            "scan_stride": 1
        },
    )

    # ckpt_file = "/home/jia/ckpts/ckpt_jrdb_ann_drow3_e40.pth"
    # d = Detector(
    #     ckpt_file, model="DROW3", gpu=True, stride=1, panoramic_scan=True
    # )

    ckpt_file = "/home/jia/ckpts/ckpt_jrdb_ann_dr_spaam_e20.pth"
    d = Detector(ckpt_file,
                 model="DR-SPAAM",
                 gpu=True,
                 stride=1,
                 panoramic_scan=True)

    d.set_laser_fov(360)

    fig = plt.figure(figsize=(10, 10))
    ax = fig.add_subplot(111)

    _break = False

    if _INTERACTIVE:

        def p(event):
            nonlocal _break
            _break = True

        fig.canvas.mpl_connect("key_press_event", p)
    else:
        if os.path.exists(_SAVE_DIR):
            shutil.rmtree(_SAVE_DIR)
        os.makedirs(_SAVE_DIR)

    for i, data_dict in enumerate(data_handle):
        if _break:
            break

        # plot scans
        scan_r = data_dict["laser_data"][-1, ::-1]  # to DROW frame
        scan_x, scan_y = u.rphi_to_xy(scan_r, data_dict["laser_grid"])

        plt.cla()
        ax.set_aspect("equal")
        ax.set_xlim(_X_LIM[0], _X_LIM[1])
        ax.set_ylim(_Y_LIM[0], _Y_LIM[1])
        ax.set_xlabel("x [m]")
        ax.set_ylabel("y [m]")
        ax.set_title(f"Frame {data_dict['idx']}. Press any key to exit.")
        # ax.axis("off")

        ax.scatter(scan_x, scan_y, s=1, c="black")

        # plot annotation
        ann_xyz = [(ann["box"]["cx"], ann["box"]["cy"], ann["box"]["cz"])
                   for ann in data_dict["pc_anns"]]
        if len(ann_xyz) > 0:
            ann_xyz = np.array(ann_xyz, dtype=np.float32).T
            ann_xyz = jt.transform_pts_base_to_laser(ann_xyz)
            ann_xyz[1] = -ann_xyz[1]  # to DROW frame
            for xyz in ann_xyz.T:
                c = plt.Circle(
                    (xyz[0], xyz[1]),
                    radius=0.4,
                    color="red",
                    fill=False,
                    linestyle="--",
                )
                ax.add_artist(c)

        # plot detection
        dets_xy, dets_cls, _ = d(scan_r)
        dets_cls_norm = np.clip(dets_cls, 0, 0.3) / 0.3
        for xy, cls_norm in zip(dets_xy, dets_cls_norm):
            color = (1.0 - cls_norm, 1.0, 1.0 - cls_norm)
            c = plt.Circle((xy[0], xy[1]),
                           radius=0.4,
                           color=color,
                           fill=False,
                           linestyle="-")
            ax.add_artist(c)

        if _INTERACTIVE:
            plt.pause(0.1)
        else:
            plt.savefig(
                os.path.join(_SAVE_DIR, f"frame_{data_dict['idx']:04}.png"))

    if _INTERACTIVE:
        plt.show()