Exemple #1
0
 def test_optimizer(self):
     buffer = torch.ones(1)
     weight = torch.ones(1, requires_grad=True)
     try:
         optimizer = torch.optim.Optimizer(weight, {})
     except TypeError:
         pass
     try:
         optimizer = torch.optim.Optimizer([], {})
     except ValueError:
         pass
     optimizer = torch.optim.Optimizer([weight], {})
     try:
         optimizer.add_param_group([weight])
     except TypeError:
         pass
     try:
         optimizer.add_param_group({'params': {'param': weight}})
     except TypeError:
         pass
     try:
         optimizer.add_param_group({'params': buffer})
     except ValueError:
         pass
     try:
         optimizer.add_param_group({'params': weight})
     except ValueError:
         pass
     _ = repr(optimizer)
Exemple #2
0
 def test_sgd(self):
     weight = torch.ones(1, requires_grad=True)
     entries = [(-0.1, 0., False), (0.1, -0.1, False), (0.1, 0., True)]
     for lr, momentum, nesterov in entries:
         try:
             _ = torch.optim.SGD([weight], lr=lr, momentum=momentum, nesterov=nesterov)
         except ValueError:
             pass
Exemple #3
0
 def test_step(self):
     weight1 = torch.ones(1, requires_grad=True)
     weight2 = torch.ones(1, requires_grad=True)
     optimizer = torch.optim.SGD([weight1, weight2], 0.1)
     y = weight1 + 1
     y.backward(y)
     optimizer.step()
     self.assertLessEqual(float(weight1) - 0.8, 1e-5)
     optimizer.zero_grad()
     self.assertLessEqual(float(weight1.grad) - 0., 1e-5)
     optimizer.zero_grad(reset=True)
     self.assertEqual(weight1.grad.numel(), 0)
     for i in range(2):
         y = weight1 + 1
         y.backward(y)
         optimizer.accumulate(0 if i == 0 else 1)
     optimizer.step()
     self.assertLessEqual(float(weight1) - 0.6, 1e-5)
Exemple #4
0
 def test_step(self):
     weight1 = torch.ones(1, requires_grad=True)
     weight2 = torch.ones(1, requires_grad=True)
     optimizer = torch.optim.SGD([weight1, weight2], 0.1)
     y = weight1 + 1
     y.backward(y)
     optimizer.step()
     self.assertLessEqual(float(weight1) - 0.8, 1e-5)
     optimizer.zero_grad()
     self.assertLessEqual(float(weight1.grad) - 0., 1e-5)
     optimizer.zero_grad(set_to_none=True)
     self.assertEqual(weight1.grad, None)
     for i in range(3):
         y = weight1 + 1
         y.backward(y)
         optimizer.sum_grad()
     optimizer.step()
     self.assertLessEqual(float(weight1) - 0.6, 1e-5)
Exemple #5
0
 def test_lars(self):
     weight = torch.ones(1, requires_grad=True)
     entries = [(-0.1, 0, 0.001), (0.1, -0.1, 0.001), (0.1, 0, -0.001),
                (0.1, 0.9, 0.001)]
     for lr, momentum, trust_coef in entries:
         try:
             _ = torch.optim.LARS([weight],
                                  lr=lr,
                                  momentum=momentum,
                                  trust_coef=trust_coef)
         except ValueError:
             pass
Exemple #6
0
 def test_adam(self):
     weight = torch.ones(1, requires_grad=True)
     entries = [(-0.1, (0., 0.), 1e-8, False),
                (0.1, (0., 0.), -1e-8, False),
                (0.1, (-0.9, 0.), 1e-8, False),
                (0.1, (0.9, -0.999), 1e-8, False),
                (0.1, (0.9, 0.999), 1e-8, False),
                (0.1, (0.9, 0.999), 1e-8, True)]
     for lr, betas, eps, amsgrad in entries:
         try:
             _ = torch.optim.Adam([weight], lr=lr, betas=betas, eps=eps, amsgrad=amsgrad)
         except (ValueError, NotImplementedError):
             pass
Exemple #7
0
 def test_channel_normalize(self):
     entries = [((2, 3, 4), [(1., 2., 3.), (3., 2., 1.), 1], {
         'dims': (0, 1, 2)
     }), ((2, 3, 4), [(1., 2., 3.), (3., 2., 1.), 2], {
         'dims': (0, 2, 1)
     })]
     for shape, args, kwargs in entries:
         perm = kwargs['dims']
         data = np.ones(shape, dtype='uint8').transpose(perm)
         mean = np.array(args[0]).reshape((1, 3, 1)).transpose(perm)
         std = np.array(args[1]).reshape((1, 3, 1)).transpose(perm)
         x = torch.ones(shape, dtype='uint8')
         y = torch.channel_normalize(x, *args, **kwargs)
         self.assertEqual(y, (data - mean) / std)
Exemple #8
0
 def test_rmsprop(self):
     weight = torch.ones(1, requires_grad=True)
     entries = [(-0.1, (0., 0.), 1e-8, False),
                (0.1, (0., 0.), -1e-8, False),
                (0.1, (-0.99, 0.), 1e-8, False),
                (0.1, (0.99, -0.9), 1e-8, False),
                (0.1, (0.99, 0.9), 1e-8, False),
                (0.1, (0.99, 0.9), 1e-8, True)]
     for lr, (alpha, momentum), eps, centered in entries:
         try:
             _ = torch.optim.RMSprop(
                 [weight], lr=lr, alpha=alpha, eps=eps,
                 momentum=momentum, centered=centered)
         except ValueError:
             pass