Exemple #1
0
'''
# TODO save with tracking data from all body parts for animation making

for ROI in arena.ROIs_dict.keys():
    # create figure and draw ROI image
    f = plt.figure(figsize=(20, 12))
    f.suptitle(ROI)
    f._save_name = f"roi_{ROI}"
    axes = f.subplot_mosaic("""
        AABC
        AADE
        FFGH
        """)

    for ax in "ABCDE":
        draw.ROI(ROI, ax=axes[ax], set_ax=True if ax == "A" else False)

    # fetch from database
    crossings = pd.DataFrame((ROICrossing * ROICrossing.InitialCondition
                              & f'roi="{ROI}"'
                              & "mouse_exits=1").fetch())
    logger.info(f"Loaded {len(crossings)} crossings")

    color = arena.ROIs_dict[crossings.iloc[0].roi].color

    # draw tracking
    for i, cross in crossings.iterrows():
        if i % 30 == 0:
            axes["A"].scatter(
                cross.x[0],
                cross.y[0],
Exemple #2
0
                # switch and lock switch for 20 frames
                lock = swc.switch_recognition(thresholded, fingers)

                channels_index = swc.switch_channel(lock, channels_index,
                                                    len(all_channels))
                frame_list = all_channels[channels_index]

            # Draw contours around real hand in live stream and the number of fingers
            visual_color = cv2.flip(visual_color, 1)
            cv2.drawContours(visual_color,
                             [hand_segment + (roi_right, roi_top)], -1,
                             (255, 0, 0), 1)
            draw.finger_number(frame_copy, fingers)
            draw.finger_number(visual_color, fingers)

            draw.ROI(visual_color, roi_left, roi_top, roi_right, roi_bottom)

            cv2.imshow("Visual threshold", visual_threshold)
            cv2.imshow("Visual color", visual_color)

            frame_number_on_video = vm.control(fingers, frame_number_on_video)

    draw.ROI(frame_copy, roi_left, roi_top, roi_right, roi_bottom)
    number_of_frame += 1

    cv2.imshow("Finger Count", frame_copy)

    # Close windows with Esc
    k = cv2.waitKey(1) & 0xFF
    if k == 27:
        break
Exemple #3
0
print(f'Kept {len(_bouts)} bouts')

# create bouts after resampling in time
paths = time.time_rescale([Path(bout.x, bout.y).smooth() for i,bout in _bouts.iterrows()])


# %%
f = plt.figure(figsize=(16, 8))
axes = f.subplot_mosaic(
    """
        AABBB
        AACCC
    """
)

draw.ROI(ROI, ax=axes["A"])

SKIP = 0
N =  10  # len(_bouts)
S, T = np.full((80, N), np.nan), np.full((80, N), np.nan)
_S, _T = np.full((80, N), np.nan), np.full((80, N), np.nan)

simulated = []
for i in track(range(N)):
    bout = paths[i]
    trajectory, _time = MSD(
        bout, skip=SKIP, start_frame=2, end_frame=-2
    ).simulate()

    # plot
    draw.Tracking(bout.x, bout.y, zorder=-1, ax=axes["A"], alpha=0.8)
Exemple #4
0
def plot_roi_crossing(
    crossing: pd.Series,
    tracking: dict = None,
    step: int = 5,
    highlight: str = None,
    arrow_scale=0.5,
) -> plt.Figure:
    """
        Plots an entire ROI crossing, tracking, vectors and mouse
    """
    if highlight == "velocity":
        v_alpha, a_alpha = 1, 0.4
    elif highlight == "acceleration":
        v_alpha, a_alpha = 0.4, 1
    else:
        v_alpha, a_alpha = 1, 1

    # path = Path(
    #     convolve_with_gaussian(crossing.x, kernel_width=11),
    #     convolve_with_gaussian(crossing.y, kernel_width=11))
    path = Path(crossing.x, crossing.y)

    f = plt.figure(figsize=(20, 10))
    axes = f.subplot_mosaic(
        """
            AACC
            AADD
            BBEE
        """
    )
    f._save_name = (
        f"{crossing.roi}_{crossing.crossing_id}" + ""
        if highlight is None
        else highlight
    )

    # draw main crossing plot
    draw.ROI(crossing.roi, ax=axes["A"], set_ax=True)
    draw.Tracking(path.x, path.y, lw=0.5, color="k", ax=axes["A"])

    # draw velocity and acceleartion vectors
    draw.Arrows(
        path.x,
        path.y,
        path.velocity.angle,
        label="velocity",
        L=arrow_scale * path.velocity.magnitude / 30,
        step=step,
        color=colors.velocity,
        ax=axes["A"],
        outline=True,
        alpha=v_alpha,
    )

    draw.Arrows(
        path.x,
        path.y,
        path.acceleration.angle,
        label="acceleration",
        L=arrow_scale * 6 * path.acceleration.magnitude / 30,
        step=step,
        color=colors.acceleration,
        ax=axes["A"],
        outline=True,
        alpha=a_alpha,
    )

    draw.Tracking.scatter(
        path.x[::step], path.y[::step], color="k", ax=axes["A"], zorder=200,
    )

    # draw speed traces
    time = np.arange(len(path.speed)) / 60
    axes["B"].fill_between(time, 0, path.speed, alpha=0.5, color=colors.speed)
    axes["B"].plot(
        time, path.speed, lw=4, color=colors.speed,
    )

    if tracking is not None:
        for bp in PAWS:
            axes["C"].plot(
                tracking[bp]["bp_speed"], color=colors.bodyparts[bp], label=bp
            )
        axes["C"].plot(
            tracking["body"]["bp_speed"],
            color=colors.bodyparts["body"],
            label="body",
        )
        axes["C"].plot(
            np.mean(
                np.vstack(
                    [tracking[bp]["bp_speed"] for bp in PAWS if "h" in bp]
                ),
                0,
            ),
            color="k",
            label="mean",
        )

    # clean plots
    axes["A"].legend()
    axes["B"].set(xlabel="time (s)", ylabel="speed (cm/s)")
    axes["C"].legend()
    f.tight_layout()

    return f
def animate_one(ROI: str, crossing_id: int, FPS: int):
    scale = 1 / 30  # to scale velocity vectors
    save_folder = (paths.analysis_folder / "behavior" /
                   "roi_crossings_animations")

    # ----------------------------------- prep ----------------------------------- #
    # load tracking
    bouts = pd.read_hdf(paths.analysis_folder / "behavior" / "roi_crossings" /
                        f"{ROI}_crossings.h5")
    bout = bouts.sort_values("duration").iloc[crossing_id]
    logger.info(f"Animating bout {crossing_id} - {round(bout.duration, 2)}s")
    # tracking: dict = ROICrossing.get_crossing_tracking(bout.crossing_id)

    # generate a path from tracking
    path = Path(bout.x, bout.y)

    # create fig and start camera
    if ROI == "T4":
        f = plt.figure(figsize=(12, 12))
    elif "S" in ROI:
        f = plt.figure(figsize=(8, 14))
    else:
        f = plt.figure(figsize=(5, 14))

    axes = f.subplot_mosaic("""
            AA
            AA
            BB
        """)
    camera = Camera(f)

    # ----------------------------------- plot ----------------------------------- #
    n_interpolated_frames = int(60 / FPS)
    n_frames = len(bout.x) - 1
    trajectory = GrowingPath()
    for frame in track(range(n_frames), total=n_frames):
        # repeat each frame N times interpolating between frames
        for interpol in np.linspace(0, 1, n_interpolated_frames):
            # get interpolated quantities
            x = interpolate_at_frame(path.x, frame, interpol)
            y = interpolate_at_frame(path.y, frame, interpol)
            speed = interpolate_at_frame(path.speed, frame, interpol)

            trajectory.update(x, y, speed=speed)

            # time elapsed
            _time = (np.arange(len(trajectory.speed)) / n_interpolated_frames /
                     60)

            # plot the arena
            draw.ROI(ROI, set_ax=True, shade=False, ax=axes["A"])

            # plot tracking so far
            draw.Tracking(trajectory.x, trajectory.y, lw=3, ax=axes["A"])
            draw.Dot(x, y, s=50, ax=axes["A"])

            # plot speed and velocity vectors
            draw.Arrow(
                x,
                y,
                interpolate_at_frame(path.velocity.angle,
                                     frame,
                                     interpol,
                                     method="step"),
                L=scale *
                interpolate_at_frame(path.velocity.magnitude, frame, interpol),
                color=colors.velocity,
                outline=True,
                width=2,
                ax=axes["A"],
            )
            draw.Arrow(
                x,
                y,
                path.acceleration.angle[frame],
                L=4 * scale * path.acceleration.magnitude[frame],
                color=colors.acceleration,
                outline=True,
                width=2,
                ax=axes["A"],
                zorder=200,
            )

            # plot speed trace
            axes["B"].fill_between(_time,
                                   0,
                                   trajectory.speed,
                                   alpha=0.5,
                                   color=colors.speed)
            axes["B"].plot(_time, trajectory.speed, lw=4, color=colors.speed)

            axes["A"].set(title=f"{ROI} - crossing: {crossing_id}")
            axes["B"].set(xlabel="time (s)", ylabel="speed (cm/s)")
            camera.snap()

    # ------------------------------- video creation ------------------------------- #
    save_path = save_folder / f"{ROI}_{bout.crossing_id}.mp4"
    logger.info(f"Saving animation @: '{save_path}'")
    animation = camera.animate(interval=1000 / FPS)
    animation.save(save_path, fps=FPS)
    logger.info("Done!")

    plt.cla()
    plt.close(f)
    del camera
    del animation

    # ----------------------------------- plot ----------------------------------- #
    f = plot_roi_crossing(bout, step=4)
    recorder.add_figures(svg=False)
    plt.close(f)
Exemple #6
0
)
selected_bouts = bouts.sample(6).reset_index()


# draw stuff
f, axes = plt.subplots(figsize=(18, 12), ncols=3, nrows=2)
axes = axes.flatten()

for i, bout in selected_bouts.iterrows():
    # generate a path from tracking
    path = Path(bout.x, bout.y)

    ax = axes[i]

    # draw arena and tracking
    draw.ROI(ROI, set_ax=True, shade=False, ax=ax)
    # draw.Tracking(bouts.x, bouts.y, alpha=0.5)

    # draw bout tracking and velocity/acceleration vectors
    # draw.Tracking.scatter(path.x, path.y, c=path.tangent.angle, cmap='bwr', vmin=-180, vmax=180)
    draw.Tracking(path.x, path.y, color=[0.6, 0.6, 0.6], lw=5, ax=ax)

    draw.Arrows(
        path.x,
        path.y,
        path.velocity.angle,
        L=path.velocity.magnitude,
        color=blue,
        step=2,
        outline=True,
        width=2,
Exemple #7
0
for i, bout in _bouts.iterrows():
    crosses.append(LocomotionBout(bout))

# %%
# ---------------------------------------------------------------------------- #
#                          first plot - sanity checks                          #
# ---------------------------------------------------------------------------- #
"""
    Plot tracking over threshold crossings for sanity checks
"""
colors = dict(velocity=blue_dark, acceleration=pink)

f, axes = plt.subplots(figsize=(16, 10), ncols=2)

for ax in axes:
    draw.ROI(ROI, set_ax=True, ax=ax)
f._save_name = f"vector_field_{ROI}"

all_xy_vectors = {
    "velocity": {},
    "acceleration": {},
}  # stores vectors at each XY position, for averaging
scale_factor = {"velocity": 20, "acceleration": 1}
for vn, (vec_name, xy_vectors) in enumerate(all_xy_vectors.items()):
    ax = axes[vn]

    cross_bins = []
    for cross in crosses:
        # round XY tracking to closest even number
        X, Y = ((cross.x) / 2).round(0) * 2, ((cross.y) / 2).round(0) * 2
        for t, (x, y) in enumerate(zip(X, Y)):
Exemple #8
0
    crosses.append(LocomotionBout(cross))


# %%
f = plt.figure(figsize=(20, 10))
axes = f.subplot_mosaic(
    """
        AAABBDDFFF
        AAACCEEFFF
    """
)

draw.ROI(
    ROI,
    ax=axes["A"],
    set_ax=True,
    # img_path=r'C:\Users\Federico\Documents\GitHub\pysical_locomotion\draw\hairpin.png'
    img_path="/Users/federicoclaudi/Documents/Github/LocomotionControl/draw/hairpin.png",
)
draw.ROI(
    ROI,
    ax=axes["F"],
    set_ax=True,
    # img_path=r'C:\Users\Federico\Documents\GitHub\pysical_locomotion\draw\hairpin.png'
    img_path="/Users/federicoclaudi/Documents/Github/LocomotionControl/draw/hairpin.png",
)

for cross in crosses:
    time = cross.gcoord

    axes["B"].plot(time, cross.speed, color="k", alpha=0.2)
# %%
# ---------------------------------------------------------------------------- #
#                          first plot - sanity checks                          #
# ---------------------------------------------------------------------------- #
"""
    Plot tracking over threshold crossings for sanity checks
"""
f = plt.figure(figsize=(24, 10))
axes = f.subplot_mosaic("""
        AAABBBBFFFG
        AAACCCCFFFH
    """)

draw.ROI(
    ROI,
    ax=axes["A"],
    set_ax=True,
)
draw.ROI(
    ROI,
    ax=axes["F"],
    set_ax=True,
)

for n, cross in enumerate(crosses):
    time = np.linspace(0, cross.duration, len(cross.x))
    # mark when the thresholds were exceeded
    try:
        acc_cross = th_crossess.loc[(th_crossess.variable == "acceleration")
                                    & (th_crossess.n == n)].iloc[0]
        aac_crooss = th_crossess.loc[
# %%
from data.data_utils import convolve_with_gaussian
import seaborn as sns

f = plt.figure(figsize=(20, 12), constrained_layout=True)
f.suptitle(f'{unit.brain_region} - {unit.unit_id}')

axes = f.subplot_mosaic('''
        AABBCCFF
        AADDEEGG
    ''')

unit = units.loc[units.unit_id == 1036].iloc[0]
frate = convolve_with_gaussian(unit.firing_rate)

draw.ROI(roi, ax=axes['A'])
X, Y = [], []
for bout in bouts:
    draw.Tracking(bout.x, bout.y - 2, ax=axes['A'])
    axes['B'].plot(bout.velocity.magnitude, color='k', lw=.5)
    axes['C'].plot(bout.thetadot, color='k', lw=.5)

    axes['D'].plot(frate[bout.start_frame:bout.end_frame])
    X.extend(list(frate[bout.start_frame + 2:bout.end_frame - 2]))
    Y.extend(list(bout.speed))

sns.regplot(X, Y, ax=axes['E'])

starts = [b.start_frame for b in bouts]
ends = [b.end_frame for b in bouts]