Exemple #1
0
def setup_percep_net(config, prepared, **kwargs):
    """
    Create a perceputal network

    Parameters
    ----------
    config : CfgNode
        Network configuration
    prepared : bool
        True if the network has been prepared before
    kwargs : dict
        Extra parameters for the network

    Returns
    -------
    depth_net : nn.Module
        Create depth network
    """
    print0(pcolor('PercepNet: %s' % config.name, 'yellow'))
    percep_net = load_class_args_create(
        config.name,
        paths=[
            'dro_sfm.networks.layers',
        ],
        args={
            **config,
            **kwargs
        },
    )
    return percep_net
Exemple #2
0
def setup_pose_net(config, prepared, **kwargs):
    """
    Create a pose network

    Parameters
    ----------
    config : CfgNode
        Network configuration
    prepared : bool
        True if the network has been prepared before
    kwargs : dict
        Extra parameters for the network

    Returns
    -------
    pose_net : nn.Module
        Created pose network
    """
    print0(pcolor('PoseNet: %s' % config.name, 'yellow'))
    pose_net = load_class_args_create(
        config.name,
        paths=[
            'dro_sfm.networks.pose',
        ],
        args={
            **config,
            **kwargs
        },
    )
    if not prepared and config.checkpoint_path is not '':
        pose_net = load_network(pose_net, config.checkpoint_path,
                                ['pose_net', 'pose_network'])
    return pose_net
Exemple #3
0
def load_network(network, path, prefixes=''):
    """
    Loads a pretrained network

    Parameters
    ----------
    network : nn.Module
        Network that will receive the pretrained weights
    path : str
        File containing a 'state_dict' key with pretrained network weights
    prefixes : str or list of str
        Layer name prefixes to consider when loading the network

    Returns
    -------
    network : nn.Module
        Updated network with pretrained weights
    """
    prefixes = make_list(prefixes)
    # If path is a string
    if is_str(path):
        saved_state_dict = torch.load(path, map_location='cpu')['state_dict']
        if path.endswith('.pth.tar'):
            saved_state_dict = backwards_state_dict(saved_state_dict)
    # If state dict is already provided
    else:
        saved_state_dict = path
    # Get network state dict
    network_state_dict = network.state_dict()

    updated_state_dict = OrderedDict()
    n, n_total = 0, len(network_state_dict.keys())
    for key, val in saved_state_dict.items():
        for prefix in prefixes:
            prefix = prefix + '.'
            if prefix in key:
                idx = key.find(prefix) + len(prefix)
                key = key[idx:]
                if key in network_state_dict.keys() and \
                        same_shape(val.shape, network_state_dict[key].shape):
                    updated_state_dict[key] = val
                    n += 1
    try:
        network.load_state_dict(updated_state_dict, strict=True)
    except Exception as e:
        print(e)
        network.load_state_dict(updated_state_dict, strict=False)
    base_color, attrs = 'cyan', ['bold', 'dark']
    color = 'green' if n == n_total else 'yellow' if n > 0 else 'red'
    print0(pcolor('=====###### Pretrained {} loaded:'.format(prefixes[0]), base_color, attrs=attrs) +
          pcolor(' {}/{} '.format(n, n_total), color, attrs=attrs) +
          pcolor('tensors', base_color, attrs=attrs))
    return network
Exemple #4
0
 def prepare_model(self, resume=None):
     """Prepare self.model (incl. loading previous state)"""
     print0(pcolor('### Preparing Model', 'green'))
     self.model = setup_model(self.config.model, self.config.prepared)
     # Resume model if available
     if resume:
         print0(
             pcolor('### Resuming from {}'.format(resume['file']),
                    'magenta',
                    attrs=['bold']))
         self.model = load_network(self.model, resume['state_dict'],
                                   'model')
         if 'epoch' in resume:
             self.current_epoch = resume['epoch']
Exemple #5
0
def main(args):

    # Initialize horovod
    hvd_init()

    # Parse arguments
    config, state_dict = parse_test_file(args.checkpoint)

    # If no image shape is provided, use the checkpoint one
    image_shape = args.image_shape
    if image_shape is None:
        image_shape = config.datasets.augmentation.image_shape

    # Set debug if requested
    set_debug(config.debug)

    # Initialize model wrapper from checkpoint arguments
    model_wrapper = ModelWrapper(config, load_datasets=False)
    # Restore monodepth_model state
    model_wrapper.load_state_dict(state_dict)

    # change to half precision for evaluation if requested
    dtype = torch.float16 if args.half else None

    # Send model to GPU if available
    if torch.cuda.is_available():
        model_wrapper = model_wrapper.to('cuda:{}'.format(rank()), dtype=dtype)

    # Set to eval mode
    model_wrapper.eval()

    if os.path.isdir(args.input):
        # If input file is a folder, search for image files
        files = []
        for ext in ['png', 'jpg']:
            files.extend(glob((os.path.join(args.input, '*.{}'.format(ext)))))
        files.sort()
        print0('Found {} files'.format(len(files)))
    else:
        # Otherwise, use it as is
        files = [args.input]

    # Process each file
    for fn in files[rank()::world_size()]:
        infer_and_save_depth(fn, args.output, model_wrapper, image_shape,
                             args.half, args.save)
Exemple #6
0
    def prepare_datasets(self, validation_requirements, test_requirements):
        """Prepare datasets for training, validation and test."""
        # Prepare datasets
        print0(pcolor('### Preparing Datasets', 'green'))

        augmentation = self.config.datasets.augmentation
        # Setup train dataset (requirements are given by the model itself)
        self.train_dataset = setup_dataset(self.config.datasets.train, 'train',
                                           self.model.train_requirements,
                                           **augmentation)
        # Setup validation dataset
        self.validation_dataset = setup_dataset(
            self.config.datasets.validation, 'validation',
            validation_requirements, **augmentation)
        # Setup test dataset
        self.test_dataset = setup_dataset(self.config.datasets.test, 'test',
                                          test_requirements, **augmentation)
Exemple #7
0
def setup_model(config, prepared, **kwargs):
    """
    Create a model

    Parameters
    ----------
    config : CfgNode
        Model configuration (cf. configs/default_config.py)
    prepared : bool
        True if the model has been prepared before
    kwargs : dict
        Extra parameters for the model

    Returns
    -------
    model : nn.Module
        Created model
    """
    print0(pcolor('Model: %s' % config.name, 'yellow'))
    config.loss.min_depth = config.params.min_depth
    config.loss.max_depth = config.params.max_depth
    model = load_class(config.name, paths=[
        'dro_sfm.models',
    ])(**{
        **config.loss,
        **kwargs
    })
    # Add depth network if required
    if model.network_requirements['depth_net']:
        config.depth_net.max_depth = config.params.max_depth
        config.depth_net.min_depth = config.params.min_depth
        model.add_depth_net(setup_depth_net(config.depth_net, prepared))
    # Add pose network if required
    if model.network_requirements['pose_net']:
        model.add_pose_net(setup_pose_net(config.pose_net, prepared))
    # Add percep_net if required
    if model.network_requirements['percep_net']:
        model.add_percep_net(setup_percep_net(config.percep_net, prepared))
    # If a checkpoint is provided, load pretrained model
    if not prepared and config.checkpoint_path is not '':
        model = load_network(model, config.checkpoint_path, 'model')
    # Return model
    return model
Exemple #8
0
def main(args):

    # Initialize horovod
    hvd_init()

    # Parse arguments
    config, state_dict = parse_test_file(args.checkpoint)

    # If no image shape is provided, use the checkpoint one
    image_shape = args.image_shape
    if image_shape is None:
        image_shape = config.datasets.augmentation.image_shape

    print(image_shape)
    # Set debug if requested
    set_debug(config.debug)

    # Initialize model wrapper from checkpoint arguments
    model_wrapper = ModelWrapper(config, load_datasets=False)
    # Restore monodepth_model state
    model_wrapper.load_state_dict(state_dict)

    # change to half precision for evaluation if requested
    dtype = torch.float16 if args.half else None

    # Send model to GPU if available
    if torch.cuda.is_available():
        model_wrapper = model_wrapper.to('cuda:{}'.format(rank()), dtype=dtype)

    # Set to eval mode
    model_wrapper.eval()

    if os.path.isdir(args.input):
        # If input file is a folder, search for image files
        files = []
        for ext in ['png', 'jpg']:
            files.extend(glob((os.path.join(args.input, '*.{}'.format(ext)))))
        files.sort()
        print0('Found {} files'.format(len(files)))
    else:
        raise RuntimeError("Input needs directory, not file")

    if not os.path.isdir(args.output):
        root, file_name = os.path.split(args.output)
        os.makedirs(root, exist_ok=True)
    else:
        raise RuntimeError("Output needs to be a file")

    # Process each file
    list_of_files = list(
        zip(files[rank():-2:world_size()], files[rank() + 1:-1:world_size()],
            files[rank() + 2::world_size()]))
    if args.offset:
        list_of_files = list_of_files[args.offset:]
    if args.limit:
        list_of_files = list_of_files[:args.limit]
    for fn1, fn2, fn3 in list_of_files:
        infer_and_save_pose([fn1, fn3], fn2, model_wrapper, image_shape,
                            args.half, args.save)

    position = np.zeros(3)
    orientation = np.eye(3)
    for key in sorted(poses.keys()):
        rot_matrix, translation = poses[key]
        orientation = orientation.dot(rot_matrix.tolist())
        position += orientation.dot(translation.tolist())
        poses[key] = {
            "rot":
            rot_matrix.tolist(),
            "trans":
            translation.tolist(),
            "pose": [
                *orientation[0], position[0], *orientation[1], position[1],
                *orientation[2], position[2], 0, 0, 0, 1
            ]
        }

    json.dump(poses, open(args.output, "w"), sort_keys=True)
    print(f"Written pose of {len(list_of_files)} images to {args.output}")
Exemple #9
0
def setup_dataset(config, mode, requirements, **kwargs):
    """
    Create a dataset class

    Parameters
    ----------
    config : CfgNode
        Configuration (cf. configs/default_config.py)
    mode : str {'train', 'validation', 'test'}
        Mode from which we want the dataset
    requirements : dict (string -> bool)
        Different requirements for dataset loading (gt_depth, gt_pose, etc)
    kwargs : dict
        Extra parameters for dataset creation

    Returns
    -------
    dataset : Dataset
        Dataset class for that mode
    """
    # If no dataset is given, return None
    if len(config.path) == 0:
        return None

    print0(pcolor('###### Setup %s datasets' % mode, 'red'))

    # Global shared dataset arguments
    dataset_args = {
        'back_context': config.back_context,
        'forward_context': config.forward_context,
        'data_transform': get_transforms(mode, **kwargs),
        'strides': config.strides
    }

    # Loop over all datasets
    datasets = []
    for i in range(len(config.split)):
        path_split = os.path.join(config.path[i], config.split[i])

        # Individual shared dataset arguments
        dataset_args_i = {
            'depth_type':
            config.depth_type[i] if requirements['gt_depth'] else None,
            'with_pose': requirements['gt_pose'],
        }

        # KITTI dataset
        if config.dataset[i] == 'KITTI':
            from dro_sfm.datasets.kitti_dataset import KITTIDataset
            dataset = KITTIDataset(
                config.path[i],
                path_split,
                **dataset_args,
                **dataset_args_i,
            )
        # DGP dataset
        elif config.dataset[i] == 'DGP':
            from dro_sfm.datasets.dgp_dataset import DGPDataset
            dataset = DGPDataset(
                config.path[i],
                config.split[i],
                **dataset_args,
                **dataset_args_i,
                cameras=config.cameras[i],
            )
        # NYU dataset
        elif config.dataset[i] == 'NYU':
            from dro_sfm.datasets.nyu_dataset_processed import NYUDataset
            dataset = NYUDataset(
                config.path[i],
                config.split[i],
                **dataset_args,
                **dataset_args_i,
            )
        # NYU dataset
        elif config.dataset[i] == 'NYUtest':
            from dro_sfm.datasets.nyu_dataset_test_processed import NYUDataset
            dataset = NYUDataset(
                config.path[i],
                config.split[i],
                **dataset_args,
                **dataset_args_i,
            )
        # Demon dataset
        elif config.dataset[i] == 'Demon':
            from dro_sfm.datasets.demon_dataset import DemonDataset
            dataset = DemonDataset(
                config.path[i],
                config.split[i],
                **dataset_args,
                **dataset_args_i,
            )

        # DemonMF dataset
        elif config.dataset[i] == 'DemonMF':
            from dro_sfm.datasets.demon_mf_dataset import DemonDataset
            dataset = DemonDataset(
                config.path[i],
                config.split[i],
                **dataset_args,
                **dataset_args_i,
            )

        # Scannet dataset
        elif config.dataset[i] == 'Scannet':
            from dro_sfm.datasets.scannet_dataset import ScannetDataset
            dataset = ScannetDataset(
                config.path[i],
                config.split[i],
                **dataset_args,
                **dataset_args_i,
            )
        # Scannet dataset
        elif config.dataset[i] == 'ScannetTest':
            from dro_sfm.datasets.scannet_test_dataset import ScannetTestDataset
            dataset = ScannetTestDataset(
                config.path[i],
                config.split[i],
                **dataset_args,
                **dataset_args_i,
            )

        # Scannet dataset
        elif config.dataset[i] == 'ScannetTestMF':
            from dro_sfm.datasets.scannet_test_dataset_mf import ScannetTestDataset
            dataset = ScannetTestDataset(
                config.path[i],
                config.split[i],
                **dataset_args,
                **dataset_args_i,
            )

        # Scannet banet dataset
        elif config.dataset[i] == 'ScannetBA':
            from dro_sfm.datasets.scannet_banet_dataset import ScannetBADataset
            dataset = ScannetBADataset(
                config.path[i],
                config.split[i],
                **dataset_args,
                **dataset_args_i,
            )

        # Video dataset
        elif config.dataset[i] == 'Video':
            from dro_sfm.datasets.video_dataset import VideoDataset
            dataset = VideoDataset(
                config.path[i],
                config.split[i],
                **dataset_args,
                **dataset_args_i,
            )

        # Video random sample dataset
        elif config.dataset[i] == 'Video_Random':
            from dro_sfm.datasets.video_random_dataset import VideoRandomDataset
            dataset = VideoRandomDataset(
                config.path[i],
                config.split[i],
                **dataset_args,
                **dataset_args_i,
            )

        # Image dataset
        elif config.dataset[i] == 'Image':
            from dro_sfm.datasets.image_dataset import ImageDataset
            dataset = ImageDataset(
                config.path[i],
                config.split[i],
                **dataset_args,
                **dataset_args_i,
            )
        else:
            ValueError('Unknown dataset %d' % config.dataset[i])

        # Repeat if needed
        if 'repeat' in config and config.repeat[i] > 1:
            dataset = ConcatDataset([dataset for _ in range(config.repeat[i])])
        datasets.append(dataset)

        # Display dataset information
        bar = '######### {:>7}'.format(len(dataset))
        if 'repeat' in config:
            bar += ' (x{})'.format(config.repeat[i])
        bar += ': {:<}'.format(path_split)
        print0(pcolor(bar, 'yellow'))

    # If training, concatenate all datasets into a single one
    if mode == 'train':
        datasets = [ConcatDataset(datasets)]

    return datasets