Exemple #1
0
def Maze2(rows, columns, wallList):
    n = rows * columns  #number of cells
    print("there are ", n, "cells ")
    m = input("How many walls would you like to remove")
    m = int(m)
    s = dsf.DisjointSetForest(n)
    #a
    if m < n - 1:
        print(
            "A path from source to destination is not guaranteed to exist (when m < n − 1)"
        )
    #b
    if m == n - 1:
        print(
            "The is a unique path from source to destination (when m = n − 1)")
    #c
    if m > n - 1:
        print(
            "There is at least one path from source to destination (when m > n − 1)"
        )
    if m > len(wallList):
        while m > 0:

            x = random.randint(0, len(wallList) - 1)
            wallList.pop(x)
            m -= 1
        return wallList
    while m > 0:
        curr = random.randint(0, len(wallList) - 1)
        wall = wallList[curr]
        if dsf.find(s, wall[0]) != dsf.find(s, wall[1]):
            dsf.union(s, wall[0], wall[1])
            wallList.pop(curr)
            m -= 1
    return wallList
Exemple #2
0
def dsfMaze(rows,columns,wallList):
    cells = rows * columns
    s = dsf.DisjointSetForest(cells)
    while dsf.NumSets(s)> 1:
        curr = random.randint(0,len(wallList)-1)
        wall = wallList[curr]
        if dsf.find(s,wall[0]) != dsf.find(s,wall[1]):
            dsf.union(s, wall[0], wall[1])
            wallList.pop(curr)
Exemple #3
0
def RemoveWalls(Set, walls):
    #This method removes walls until all celss are part of the same set.
    while CheckSet(M) is not True:
        #Here we choose a random wall
        d = random.randint(0, len(walls) - 1)
        #If the cells are not in the same set, we remove the wall keeping them apart.
        if SameSet(Set, walls, d) == False:
            #NOTE: For this particular submission, I used union without compression.
            dsf.union(Set, walls[d][0], walls[d][1])
            walls.pop(d)
    return
Exemple #4
0
def adjListdsfMaze(rows, columns, wallList):
    cells = rows * columns
    s = dsf.DisjointSetForest(cells)
    G = [[] for i in range(len(cells))]
    while dsf.NumSets(s) > 1:
        curr = random.randint(0, len(wallList) - 1)
        wall = wallList[curr]
        if dsf.find(s, wall[0]) != dsf.find(s, wall[1]):
            dsf.union(s, wall[0], wall[1])
            newEntry = wallList.pop(curr)
            G[newEntry[0]].append(newEntry[1])
    return G
Exemple #5
0
def remove_walls(W, sets, Print):
    numSets = dsf.num_of_sets(sets)
    start = dt.now()
    while numSets > 1 and W is not None:
        d = random.randint(0, len(walls) - 1)
        #print(numSets)
        if (dsf.in_same_set(sets, walls[d][0], walls[d][1])) == False:
            dsf.union(sets, walls[d][0], walls[d][1])
            numSets -= 1
            walls.pop(d)
    stop = dt.now() - start
    if Print == True:
        draw_maze(walls, maze_rows, maze_cols)
    print('Without compression, wall removal took ', stop, ' to complete.')
Exemple #6
0
def remove_x_walls(W, Print, maze_rows, maze_cols, x):
    sets = dsf.DisjointSetForest(maze_rows * maze_cols)
    start = dt.now()

    for i in range(x):
        d = random.randint(0, len(W) - 1)
        dsf.union(sets, W[d][0], W[d][1])
        W.pop(d)
    stop = dt.now() - start

    if Print == True:
        draw_maze(W, maze_rows, maze_cols, True)
    print('wall removal took ', stop, ' to complete.')

    return W
Exemple #7
0
def primsMinTree(AL):
    forest = dsf.dsf(len(AL))
    AL2 = [[] for i in range(len(AL))]
    heap = []
    vertex = 0
    for i in range(len(AL) - 1):
        for j in range(len(AL[vertex])):
            HeapInsert(heap, [vertex] + AL[vertex][j])
        while True:
            pointWeight = ExtractMin(heap)
            if pointWeight == None:
                break
            if forest[pointWeight[1]] == -1 and pointWeight[1] != 0:
                AL2[pointWeight[0]].append(pointWeight[1:])
                AL2[pointWeight[1]].append([pointWeight[0], pointWeight[2]])
                dsf.union(forest, pointWeight[0], pointWeight[1])
                vertex = pointWeight[1]
                print()
                break

    return AL2
Exemple #8
0
                w.append([cell, cell + 1])
            if r != maze_rows - 1:
                w.append([cell, cell + maze_cols])
    return w


plt.close("all")
maze_rows = 10
maze_cols = 15

maze = dsf.DisjointSetForest(maze_rows * maze_cols)
walls = wall_list(maze_rows, maze_cols)

draw_maze(walls, maze_rows, maze_cols, cell_nums=True)

for i in range(len(maze) * 2):
    d = random.randint(0, len(walls) - 1)
    if dsf.union(maze, walls[d][1], walls[d][0]):
        walls.pop(d)
"""
if dsf.union_c(maze, walls[d][0], walls[d][1]):
    walls.pop(d)
"""
#print(walls)
#d = random.randint(0, len(walls)-1)
#print(walls[d][1], walls[d][0])

draw_maze(walls, maze_rows, maze_cols)
plt.show()
print((time.time() - start))