Exemple #1
0
    def get_distance_matrix(self):
        """!
        @brief Calculates distance matrix (U-matrix).
        @details The U-Matrix visualizes based on the distance in input space between a weight vector and its neighbors
        on map.

        @return (list) Distance matrix (U-matrix).

        @see show_distance_matrix()
        @see get_density_matrix()

        """
        distance_matrix = [[0.0] * self._cols for i in range(self._rows)]

        for i in range(self._rows):
            for j in range(self._cols):
                neuron_index = i * self._cols + j

                if self._conn_type == type_conn.func_neighbor:
                    self._create_connections(type_conn.grid_eight)

                for neighbor_index in self._neighbors[neuron_index]:
                    distance_matrix[i][j] += dtw_ndim.distance(
                        self._weights[neuron_index],
                        self._weights[neighbor_index],
                        window=self._dtw_params.window,
                        max_step=self._dtw_params.max_step,
                        max_length_diff=self._dtw_params.max_length_diff,
                    )

                distance_matrix[i][j] /= len(self._neighbors[neuron_index])

        return distance_matrix
Exemple #2
0
def compute_ndim_dwt_dist_between_ts_and_list(single_ts,
                                              ts_list,
                                              max_dist=None):
    dist_list = []
    for ts in ts_list:
        dist = dtw_ndim.distance(single_ts, ts, max_dist=max_dist)
        dist_list.append(dist)
    return dist_list
Exemple #3
0
def test_distance1_a():
    with util_numpy.test_uses_numpy() as np:
        s1 = np.array([[0, 0], [0, 1], [2, 1], [0, 1],  [0, 0]], dtype=np.double)
        s2 = np.array([[0, 0], [2, 1], [0, 1], [0, .5], [0, 0]], dtype=np.double)
        d1 = dtw_ndim.distance(s1, s2)
        d1p, paths = dtw_ndim.warping_paths(s1, s2)
        # print(d1, d1p)
        assert d1 == pytest.approx(d1p)
Exemple #4
0
def test_distance1_a():
    s1 = np.array([[0, 0], [0, 1], [2, 1], [0, 1],  [0, 0]], dtype=np.double)
    s2 = np.array([[0, 0], [2, 1], [0, 1], [0, .5], [0, 0]], dtype=np.double)
    d1 = dtw_ndim.distance(s1, s2)
    print(d1)
    d1p, paths = dtw_ndim.warping_paths(s1, s2)
    print(d1p)
    print(paths)
    assert d1 == pytest.approx(d1p)
Exemple #5
0
def make_pairwise_distance(seqs):
	dtw_pairs=make_dtw_pairs(seqs)
	names=list(seqs.keys())
	n_ts=len(names)
	for i in range(1,n_ts):
		print(i)
		for j in range(0,i):
			name_i,name_j=names[i],names[j]
			distance_ij=dtw_ndim.distance(seqs[name_i],seqs[name_j])
			dtw_pairs.set(name_i,name_j,distance_ij)
			dtw_pairs.set(name_j,name_i,distance_ij)
	return dtw_pairs
Exemple #6
0
def make_pairwise_distance(ts_dataset):
    names = list(ts_dataset.keys())
    n_ts = len(names)
    pairs_dict = {name_i: {name_i: 0.0} for name_i in names}
    for i in range(1, n_ts):
        print(i)
        for j in range(0, i):
            name_i, name_j = names[i], names[j]
            distance_ij = dtw_ndim.distance(ts_dataset[name_i],
                                            ts_dataset[name_j])
            pairs_dict[name_i][name_j] = distance_ij
            pairs_dict[name_j][name_i] = distance_ij
    return pairs_dict
Exemple #7
0
def test_distance2():
    test_A = [[2.65598039, 0.93622549, -0.04169118],
              [2.02625, 0.965625, -0.050625],
              [0.41973039, 0.85968137, 0.38970588],
              [0.3669697, -0.03221591, 0.09734848],
              [0.68905971, -0.65101381, -0.70944742],
              [0.14142316, -0.81769481, -0.44556277],
              [0.2569697, -0.6330303, -0.35503788],
              [-0.39339286, 0.02303571, -0.48428571],
              [-0.8275, -0.02125, -0.0325],
              [-0.65293269, -0.29504808, 0.30557692]]

    test_B = [[-1.54647436e+00, -3.76602564e-01, -8.58974359e-01],
              [-1.14283907e+00, -8.50961538e-01, -5.42974022e-01],
              [-4.86715587e-01, -8.62221660e-01, -6.32211538e-01],
              [3.54672740e-02, -4.37500000e-01, -4.41801619e-01],
              [7.28618421e-01, -4.93421053e-03, -8.90625000e-01],
              [1.03525641e+00, 1.25000000e-01, -8.50961538e-01],
              [5.24539474e-01, 1.07828947e-01, -3.99375000e-01],
              [5.04464286e-01, 3.76275510e-01, -6.74744898e-01],
              [1.20897959e+00, 1.10793367e+00, -1.45681122e+00],
              [8.70535714e-01, 8.73724490e-01, -1.01275510e+00]]

    with util_numpy.test_uses_numpy() as np:
        test_A = np.array(test_A)
        test_B = np.array(test_B)

        d1 = dtw_ndim.distance(test_A, test_B, use_c=False)
        d2 = dtw_ndim.distance(test_A, test_B, use_c=True)

        d3, paths = dtw_ndim.warping_paths(test_A, test_B)
        d4, paths = dtw_ndim.warping_paths(test_A, test_B, use_c=True)

        assert d1 == pytest.approx(d2)
        assert d1 == pytest.approx(d3)
        assert d1 == pytest.approx(d4)
Exemple #8
0
 def dtwdis_new(self, model_points, input_points):
     return self.percentage_score(
         dtw_ndim.distance(model_points, input_points))