Exemple #1
0
def test_equal_numpy_qshift1():
    ha = qshift('qshift_c')[0]
    hb = qshift('qshift_c')[1]
    ref = np_coldfilt(mandrill.T, ha, hb).T
    y_op = rowdfilt(mandrill_t, ha, hb)
    with tf.Session() as sess:
        y = sess.run(y_op)
    np.testing.assert_array_almost_equal(y[0], ref, decimal=4)
Exemple #2
0
def test_equal_numpy_qshift1():
    ha = qshift('qshift_c')[0]
    hb = qshift('qshift_c')[1]
    ref = np_coldfilt(mandrill.T, ha, hb).T
    y_op = rowdfilt(mandrill_t, ha, hb)
    with tf.Session() as sess:
        y = sess.run(y_op)
    np.testing.assert_array_almost_equal(y[0], ref, decimal=4)
Exemple #3
0
def test_equal_numpy_qshift2():
    ha = qshift('qshift_c')[0]
    hb = qshift('qshift_c')[1]
    im = mandrill[:508, :504]
    im_t = tf.expand_dims(tf.constant(im, tf.float32), axis=0)
    ref = np_coldfilt(im.T, ha, hb).T
    y_op = rowdfilt(im_t, ha, hb)
    with tf.Session() as sess:
        y = sess.run(y_op)
    np.testing.assert_array_almost_equal(y[0], ref, decimal=4)
Exemple #4
0
def test_equal_numpy_qshift2():
    ha = qshift('qshift_c')[0]
    hb = qshift('qshift_c')[1]
    im = mandrill[:508, :504]
    im_t = tf.expand_dims(tf.constant(im, tf.float32), axis=0)
    ref = np_coldfilt(im.T, ha, hb).T
    y_op = rowdfilt(im_t, ha, hb)
    with tf.Session() as sess:
        y = sess.run(y_op)
    np.testing.assert_array_almost_equal(y[0], ref, decimal=4)
Exemple #5
0
def test_equal_small_in():
    ha = qshift('qshift_b')[0]
    hb = qshift('qshift_b')[1]
    im = mandrill[0:4,0:4]
    im_t = tf.expand_dims(tf.constant(im, tf.float32), axis=0)
    ref = np_coldfilt(im, ha, hb)
    y_op = coldfilt(im_t, ha, hb)
    with tf.Session() as sess:
        y = sess.run(y_op)
    np.testing.assert_array_almost_equal(y[0], ref, decimal=4)
def setup():
    global barbara, barbara_t
    global bshape, bshape_half
    global ref_rowdfilt, ch
    py3nvml.grab_gpus(1, gpu_fraction=0.5, env_set_ok=True)
    barbara = datasets.barbara()
    barbara = (barbara / barbara.max()).astype('float32')
    barbara = barbara.transpose([2, 0, 1])
    bshape = list(barbara.shape)
    bshape_half = bshape[:]
    bshape_half[2] //= 2
    barbara_t = torch.unsqueeze(torch.tensor(barbara, dtype=torch.float32),
                                dim=0).to(dev)
    ch = barbara_t.shape[1]

    # Some useful functions
    ref_rowdfilt = lambda x, ha, hb: np.stack(
        [np_coldfilt(s.T, ha, hb).T for s in x], axis=0)