def __split(self): """split current node""" max_gain, attr_index, partition_value = self.__information_gain() self.leaf = False self.attr_index = attr_index self.partition_value = partition_value tn_le = DTreeGain(DTreeSample(), self.param) tn_le.sample.m = self.sample.m tn_gt = DTreeGain(DTreeSample(), self.param) tn_gt.sample.m = self.sample.m for i in range(0, self.sample.n): x = self.sample.X[i] y = self.sample.Y[i] attr_value = x[attr_index] if attr_value <= partition_value: tn_le.sample.add_xy(x, y) else: tn_gt.sample.add_xy(x, y) left_n = len(tn_le.sample) right_n = len(tn_gt.sample) print >> sys.stderr, '[split]level=%d, max_gain=%f, attr_index=%d, partition_value=%f, left/right=%d/%d' % ( self.level, max_gain, attr_index, partition_value, left_n, right_n) if left_n == 0: tn_le = None if right_n == 0: tn_gt = None return tn_le, tn_gt
def __split(self): """split current node""" max_gain, attr_index, partition_value, y_value_left, y_value_right = self.__gain() self.leaf = False self.attr_index = attr_index self.partition_value = partition_value self.value = None tn_le = DTreeLoss(DTreeSample(), self.param) tn_le.sample.m = self.sample.m tn_le.level = self.level + 1 tn_le.value = y_value_left tn_gt = DTreeLoss(DTreeSample(), self.param) tn_gt.sample.m = self.sample.m tn_gt.level = self.level + 1 tn_gt.value = y_value_right for i in range(0, self.sample.n): x = self.sample.X[i] y = self.sample.Y[i] y_residual = self.sample.Y_residual[i] attr_value = x[attr_index] if attr_value <= partition_value: tn_le.sample.add_xyr(x, y, y_residual) else: tn_gt.sample.add_xyr(x, y, y_residual) tn_le.__residual_2_response() tn_gt.__residual_2_response() left_n = len(tn_le.sample) right_n = len(tn_gt.sample) print >>sys.stderr, '[split]level=%d, max_gain=%f, attr_index=%d, partition_value=%f, left/right=%d/%d' % (self.level, max_gain, attr_index, partition_value, left_n, right_n) if left_n == 0: tn_le = None if right_n == 0: tn_gt = None return tn_le, tn_gt
# -*- coding: utf-8 -*- # # 预测房地产价格 # # author: yafei([email protected]) # import sys import codecs import locale from dtree_loss import DTreeLoss from dtree_parameter import DTreeParameter from dtree_sample import DTreeSample if __name__ == '__main__': param = DTreeParameter() sample = DTreeSample() sample.load('real-estate.txt') dt = DTreeLoss(sample, param) dt.train(None) feature_map = { 0: u'结构', 1: u'装修', 2: u'周边', 3: u'地段', 4: u'绿化', 5: u'交通', 6: u'户均车位', } # 为了输出中文 locale.setlocale(locale.LC_ALL, '')