def run(title, base_batch_size, base_labeled_batch_size, base_lr, n_labels, data_seed, **kwargs): LOG.info('run title: %s, data seed: %d', title, data_seed) ngpu = torch.cuda.device_count() assert ngpu > 0, "Expecting at least one GPU, found none." adapted_args = { 'batch_size': base_batch_size * ngpu, 'labeled_batch_size': base_labeled_batch_size * ngpu, 'lr': base_lr * ngpu, 'labels': 'third_party/data-local/labels/cifar10/{}_balanced_labels/{:02d}.txt'.format(n_labels, data_seed), } context = RunContext(__file__, "{}_{}".format(n_labels, data_seed)) dual_student.args = parse_dict_args(**adapted_args, **kwargs) dual_student.main(context)
def run(title, base_batch_size, base_labeled_batch_size, base_lr, n_labels, data_seed, **kwargs): LOG.info('run title: %s, data seed: %d', title, data_seed) ngpu = torch.cuda.device_count() assert ngpu > 0, "Expecting at least one GPU, found none." adapted_args = { 'batch_size': base_batch_size * ngpu, 'labeled_batch_size': base_labeled_batch_size * ngpu, 'lr': base_lr * ngpu, 'labels': 'third_party/data-local/labels/usps/{}_balanced_labels/{:02d}.txt'.format(n_labels, data_seed), } context = RunContext(__file__, "{}_{}".format(n_labels, data_seed)) fh = logging.FileHandler('{0}/log.txt'.format(context.result_dir)) fh.setLevel(logging.INFO) LOG.addHandler(fh) dual_student.args = parse_dict_args(**adapted_args, **kwargs) dual_student.main(context)