def __init__(self, configuration): # Images to be processed self.bgr = np.empty(0) self.hsv = np.empty(0) self.edges = np.empty(0) param_names = [ 'hsv_white1', 'hsv_white2', 'hsv_yellow1', 'hsv_yellow2', 'hsv_red1', 'hsv_red2', 'hsv_red3', 'hsv_red4', 'hsv_green1', 'hsv_green2', 'hsv_blue1', 'hsv_blue2', 'hsv_no1', 'hsv_no2', 'dilation_kernel_size', 'canny_thresholds', 'hough_threshold', 'hough_min_line_length', 'hough_max_line_gap', ] Configurable.__init__(self, param_names, configuration)
def __init__(self,configuration): param_names = [ 'mean_d_0', 'mean_phi_0', 'sigma_d_0', 'sigma_phi_0', 'delta_d', 'delta_phi', 'd_max', 'd_min', 'phi_max', 'phi_min', 'cov_v', 'linewidth_white', 'linewidth_yellow', 'lanewidth', 'min_max', 'sigma_d_mask', 'sigma_phi_mask', ] configuration = copy.deepcopy(configuration) Configurable.__init__(self,param_names,configuration) self.d,self.phi = np.mgrid[self.d_min:self.d_max:self.delta_d,self.phi_min:self.phi_max:self.delta_phi] self.belief=np.empty(self.d.shape) self.mean_0 = [self.mean_d_0, self.mean_phi_0] self.cov_0 = [ [self.sigma_d_0, 0], [0, self.sigma_phi_0] ] self.cov_mask = [self.sigma_d_mask, self.sigma_phi_mask] self.initialize()
def __init__(self, configuration): # Images to be processed self.bgr = np.empty(0) self.hsv = np.empty(0) self.edges = np.empty(0) param_names = [ 'hsv_white1', 'hsv_white2', 'hsv_yellow1', 'hsv_yellow2', 'hsv_red1', 'hsv_red2', 'hsv_red3', 'hsv_red4', 'hsv_blue1', 'hsv_blue2', 'dilation_kernel_size', 'canny_thresholds', 'hough_threshold', 'hough_min_line_length', 'hough_max_line_gap', ] Configurable.__init__(self, param_names, configuration)
def __init__(self, configuration): # Images to be processed self.bgr = np.empty(0) self.hsv = np.empty(0) self.edges = np.empty(0) param_names = [ 'hsv_white1', 'hsv_white2', 'hsv_yellow1', 'hsv_yellow2', 'hsv_red1', 'hsv_red2', 'hsv_red3', 'hsv_red4', <<<<<<< HEAD 'hsv_blue1', 'hsv_blue2', ======= >>>>>>> 2d356ff5df7440b437fd8915a698c3f4ba9b0c0c 'dilation_kernel_size', 'canny_thresholds', 'hough_threshold', 'hough_min_line_length', 'hough_max_line_gap', ] Configurable.__init__(self, param_names, configuration)
def __init__(self, configuration): param_names = [ 'mean_d_0', 'mean_phi_0', 'sigma_d_0', 'sigma_phi_0', 'delta_d', 'delta_phi', 'd_max', 'd_min', 'phi_max', 'phi_min', 'cov_v', 'linewidth_white', 'linewidth_yellow', 'lanewidth', 'min_max', 'sigma_d_mask', 'sigma_phi_mask', 'curvature_res', 'range_min', 'range_est', 'range_max', 'curvature_right', 'curvature_left', ] configuration = copy.deepcopy(configuration) Configurable.__init__(self, param_names, configuration) self.d, self.phi = np.mgrid[self.d_min:self.d_max:self.delta_d, self.phi_min:self.phi_max:self.delta_phi] self.d_pcolor, self.phi_pcolor = \ np.mgrid[self.d_min:(self.d_max + self.delta_d):self.delta_d, self.phi_min:(self.phi_max + self.delta_phi):self.delta_phi] self.beliefArray = [] self.range_arr = np.zeros(self.curvature_res + 1) for i in range(self.curvature_res + 1): self.beliefArray.append(np.empty(self.d.shape)) self.mean_0 = [self.mean_d_0, self.mean_phi_0] self.cov_0 = [[self.sigma_d_0, 0], [0, self.sigma_phi_0]] self.cov_mask = [self.sigma_d_mask, self.sigma_phi_mask] self.d_med_arr = [] self.phi_med_arr = [] self.median_filter_size = 5 self.initialize() self.updateRangeArray(self.curvature_res) # Additional variables self.red_to_white = False self.use_yellow = True self.range_est_min = 0 self.filtered_segments = []
def __init__(self, configuration): # Images to be processed self.bgr = np.empty(0) self.hsv = np.empty(0) self.edges = np.empty(0) param_names = [ 'hsv_white1', 'hsv_white2', 'hsv_yellow1', 'hsv_yellow2', 'hsv_red1', 'hsv_red2', 'hsv_red3', 'hsv_red4', 'dilation_kernel_size', 'canny_thresholds', 'hough_threshold', 'hough_min_line_length', 'hough_max_line_gap', ] configuration = copy.deepcopy(configuration) Configurable.__init__(self, param_names, configuration) self.dilation_kernel_size = 3 self.canny_thresholds = [80,200] self.hough_threshold = 2 self.hough_min_line_length = 3 self.hough_max_line_gap = 1 self.hsv_white1 = [0,0,150] self.hsv_white2 = [180,60,255] self.hsv_yellow1 = [25,140,100] self.hsv_yellow2 = [45,255,255] self.hsv_red1 = [0,140,100] self.hsv_red2 = [15,255,255] self.hsv_red3 = [165,140,100] self.hsv_red4 = [180,255,255]
def __init__(self, configuration): # Images to be processed self.bgr = np.empty(0) self.hsv = np.empty(0) self.edges = np.empty(0) param_names = [ 'hsv_white1', 'hsv_white2', 'hsv_yellow1', 'hsv_yellow2', 'hsv_red1', 'hsv_red2', 'hsv_red3', 'hsv_red4', 'dilation_kernel_size', 'canny_thresholds', 'sobel_threshold', ] Configurable.__init__(self, param_names, configuration)
def __init__(self, configuration): param_names = [ 'mean_d_0', 'mean_phi_0', 'sigma_d_0', 'sigma_phi_0', 'delta_d', 'delta_phi', 'd_max', 'd_min', 'phi_max', 'phi_min', 'cov_v', 'linewidth_white', 'linewidth_yellow', 'lanewidth', 'min_max', 'sigma_d_mask', 'sigma_phi_mask', 'curvature_res', 'range_min', 'range_est', 'range_max', 'curvature_right', 'curvature_left', ] configuration = copy.deepcopy(configuration) Configurable.__init__(self, param_names, configuration) self.d, self.phi = np.mgrid[self.d_min:self.d_max:self.delta_d, self.phi_min:self.phi_max:self.delta_phi] self.d_pcolor, self.phi_pcolor = \ np.mgrid[self.d_min:(self.d_max + self.delta_d):self.delta_d, self.phi_min:(self.phi_max + self.delta_phi):self.delta_phi] self.beliefArray = [] self.range_arr = np.zeros(self.curvature_res + 1) for i in range(self.curvature_res + 1): self.beliefArray.append(np.empty(self.d.shape)) self.mean_0 = [self.mean_d_0, self.mean_phi_0] self.cov_0 = [[self.sigma_d_0, 0], [0, self.sigma_phi_0]] self.cov_mask = [self.sigma_d_mask, self.sigma_phi_mask] self.d_med_arr = [] self.phi_med_arr = [] self.median_filter_size = 5 self.default_delta_d = self.delta_d self.default_delta_phi = self.delta_phi self.update_matrix(1) #1 is initial value matrix_mash_size self.initialize() self.updateRangeArray(self.curvature_res) # Additional variables self.red_to_white = False self.is_dynamic = True self.range_est_min = 0 self.filtered_segments = [] # The dynamic color can be used to change which color # the Duckiebot observes during lane following, instead of yellow self.dynamic_color = YELLOW self.dynamic_color_sub = rospy.Subscriber('/parking/lane_color', String, self.updateDynamicColor, queue_size=1)