Exemple #1
0
def integrate(sequence):
    total = 0.0
    timestamps = []
    values = []
    for _ in iterate_with_dt(sequence):
        v0 = _.v0
        dt = _.dt
        total += v0 * dt

        timestamps.append(_.t0)
        values.append(total)

    return SampledSequence(timestamps, values)
def integrate(sequence):
    """ Integrates with respect to time.
        That is, it multiplies the value with the Delta T. """
    total = 0.0
    timestamps = []
    values = []
    for _ in iterate_with_dt(sequence):
        v0 = _.v0
        dt = _.dt
        total += v0 * dt

        timestamps.append(_.t0)
        values.append(total)

    return SampledSequence(timestamps, values)
Exemple #3
0
def integrate(sequence: SampledSequence[float]) -> SampledSequence[float]:
    """ Integrates with respect to time.
        That is, it multiplies the value with the Delta T. """
    if not sequence:
        msg = "Cannot integrate empty sequence."
        raise ValueError(msg)
    total = 0.0
    timestamps = []
    values = []
    for _ in iterate_with_dt(sequence):
        v0 = float(_.v0)
        dt = _.dt
        total += float(v0 * dt)

        timestamps.append(Timestamp(_.t0))
        values.append(total)

    return SampledSequence[float](timestamps, values)
Exemple #4
0
    def evaluate(self, context: RuleEvaluationContext,
                 result: RuleEvaluationResult):
        interval = context.get_interval()
        lane_pose_seq = context.get_lane_pose_seq()
        ego_pose_sequence = context.get_ego_pose_global()

        timestamps = []
        driven_any = []
        driven_lanedir = []

        tile_fqn2lane_fqn = {}
        for idt in iterate_with_dt(interval):
            t0, t1 = idt.v0, idt.v1  # not v
            try:
                name2lpr = lane_pose_seq.at(t0)

                p0 = ego_pose_sequence.at(t0).as_SE2()
                p1 = ego_pose_sequence.at(t1).as_SE2()
            except UndefinedAtTime:
                dr_any = dr_lanedir = 0.0

            else:
                prel = relative_pose(p0, p1)
                translation, _ = geo.translation_angle_from_SE2(prel)
                dr_any = np.linalg.norm(translation)

                if name2lpr:

                    ds = []
                    for k, lpr in name2lpr.items():
                        if lpr.tile_fqn in tile_fqn2lane_fqn:
                            if lpr.lane_segment_fqn != tile_fqn2lane_fqn[
                                    lpr.tile_fqn]:
                                # msg = 'Backwards detected'
                                # print(msg)
                                continue

                        tile_fqn2lane_fqn[lpr.tile_fqn] = lpr.lane_segment_fqn

                        assert isinstance(lpr, GetLanePoseResult)
                        c0 = lpr.center_point
                        ctas = geo.translation_angle_scale_from_E2(
                            c0.asmatrix2d().m)
                        c0_ = geo.SE2_from_translation_angle(
                            ctas.translation, ctas.angle)
                        prelc0 = relative_pose(c0_, p1)
                        tas = geo.translation_angle_scale_from_E2(prelc0)

                        # otherwise this lane should not be reported
                        # assert tas.translation[0] >= 0, tas
                        ds.append(tas.translation[0])

                    dr_lanedir = max(ds) if ds else 0.0
                else:
                    # no lp
                    dr_lanedir = 0.0

            driven_any.append(dr_any)
            driven_lanedir.append(dr_lanedir)
            timestamps.append(t0)

        title = "Consecutive lane distance"

        driven_lanedir_incremental = SampledSequence[float](timestamps,
                                                            driven_lanedir)
        driven_lanedir_cumulative = accumulate(driven_lanedir_incremental)

        if len(driven_lanedir_incremental) <= 1:
            total = 0
        else:
            total = driven_lanedir_cumulative.values[-1]
        description = textwrap.dedent("""\
            This metric computes how far the robot drove **in the direction of the correct lane**,
            discounting whenever it was driven in the wrong direction with respect to the start.
        """)
        result.set_metric(
            name=("driven_lanedir_consec", ),
            total=total,
            incremental=driven_lanedir_incremental,
            title=title,
            description=description,
            cumulative=driven_lanedir_cumulative,
        )
Exemple #5
0
    def evaluate(self, context: RuleEvaluationContext,
                 result: RuleEvaluationResult):
        interval = context.get_interval()
        lane_pose_seq = context.get_lane_pose_seq()
        ego_pose_sequence = context.get_ego_pose_global()

        driven_any_builder = SampledSequenceBuilder[float]()
        driven_lanedir_builder = SampledSequenceBuilder[float]()

        for idt in iterate_with_dt(interval):
            t0, t1 = idt.v0, idt.v1  # not v
            try:
                name2lpr = lane_pose_seq.at(t0)

                p0 = ego_pose_sequence.at(t0).as_SE2()
                p1 = ego_pose_sequence.at(t1).as_SE2()
            except UndefinedAtTime:
                dr_any = dr_lanedir = 0.0

            else:
                prel = relative_pose(p0, p1)
                translation, _ = geo.translation_angle_from_SE2(prel)
                dr_any = np.linalg.norm(translation)

                if name2lpr:

                    ds = []
                    for k, lpr in name2lpr.items():
                        assert isinstance(lpr, GetLanePoseResult)
                        c0 = lpr.center_point
                        ctas = geo.translation_angle_scale_from_E2(
                            c0.asmatrix2d().m)
                        c0_ = geo.SE2_from_translation_angle(
                            ctas.translation, ctas.angle)
                        prelc0 = relative_pose(c0_, p1)
                        tas = geo.translation_angle_scale_from_E2(prelc0)

                        # otherwise this lane should not be reported
                        # assert tas.translation[0] >= 0, tas
                        ds.append(tas.translation[0])

                    dr_lanedir = max(ds)
                else:
                    # no lp
                    dr_lanedir = 0.0

            driven_any_builder.add(t0, dr_any)
            driven_lanedir_builder.add(t0, dr_lanedir)

        driven_any_incremental = driven_any_builder.as_sequence()

        driven_any_cumulative = accumulate(driven_any_incremental)

        if len(driven_any_incremental) <= 1:
            total = 0
        else:
            total = driven_any_cumulative.values[-1]

        title = "Distance"
        description = textwrap.dedent("""\
            This metric computes how far the robot drove.
        """)

        result.set_metric(
            name=("driven_any", ),
            total=total,
            incremental=driven_any_incremental,
            title=title,
            description=description,
            cumulative=driven_any_cumulative,
        )
        title = "Lane distance"

        driven_lanedir_incremental = driven_lanedir_builder.as_sequence()
        driven_lanedir_cumulative = accumulate(driven_lanedir_incremental)

        if len(driven_lanedir_incremental) <= 1:
            total = 0
        else:
            total = driven_lanedir_cumulative.values[-1]

        description = textwrap.dedent("""\
            This metric computes how far the robot drove
            **in the direction of the lane**.
        """)
        result.set_metric(
            name=("driven_lanedir", ),
            total=total,
            incremental=driven_lanedir_incremental,
            title=title,
            description=description,
            cumulative=driven_lanedir_cumulative,
        )