Exemple #1
0
    def __init__(self):
        self.model = None
        self.r = sr.Recognizer()
        self.nlp = spacy.load(conf.get_property('spacy')['model'])
        self.espeak = conf.get_property('espeak')

        # Load low-level Duckling model
        self.duckling = Duckling()
        self.duckling.load(
            languages=conf.get_property('duckling')['languages'])

        # Remember tasks
        self.task_memory = []
'''
  Asistente conversacional Aragón Open Data_v1.0.0
  Copyright © 2020 Gobierno de Aragón (España)
  Author: Instituto Tecnológico de Aragón ([email protected])
  All rights reserved
'''
import json
from datetime import datetime
import requests
from duckling import Duckling
from pprint import pprint
from typing import Dict, Any, List, Union

import re

duckling = Duckling()
duckling.load(languages=["es"])

#########################
# NUMBERS & MONTHS MAPS #
#########################

map_numbers_es = {
    "un": 1,
    "uno": 1,
    "dos": 2,
    "tres": 3,
    "cuatro": 4,
    "cinco": 5,
    "seis": 6,
    "siete": 7,
Exemple #3
0
def test_not_load():
    duckling = Duckling()
    assert duckling._is_loaded is False
    with pytest.raises(RuntimeError):
        duckling.parse('')
Exemple #4
0
def duckling():
    return Duckling()
Exemple #5
0
 def __init__(self):
     self.d = Duckling()
     self.d.load()
Exemple #6
0
class AppointmentForm(FormAction):
    """Example of a custom form action"""
    def __init__(self):
        self.d = Duckling()
        self.d.load()

    def name(self):
        # type: () -> Text
        """Unique identifier of the form"""

        return "appointment_form"

    @staticmethod
    def required_slots(tracker: Tracker) -> List[Text]:
        """A list of required slots that the form has to fill"""

        return ["date", "time", "pet", "petName"]

    def slot_mappings(self):

        return {
            "date": [self.from_entity(entity="date"),
                     self.from_text()],
            "time": [self.from_entity(entity="time"),
                     self.from_text()],
            "pet": [self.from_entity(entity="pet"),
                    self.from_text()],
            "petName": [self.from_entity(entity="petName"),
                        self.from_text()],
        }

    @staticmethod
    def pet_db():
        # type: () -> List[Text]
        """Database of supported cuisines"""
        return [
            "dog", "cat", "bird", "tortoise", "rabbit", "guinea pig", "mouse",
            "hamster", "turtles"
        ]

    def validate_date(self, value: Text, dispatcher: CollectingDispatcher,
                      tracker: Tracker, domain: Dict[Text,
                                                     Any]) -> Dict[Text, Any]:
        """Validate date value."""

        date = date_validator(value)
        if (date != None):
            return {"date": date}
        else:
            dispatcher.utter_template('utter_wrong_date', tracker)
            # validation failed, set this slot to None, meaning the
            # user will be asked for the slot again
            return {"date": None}

    def validate_pet(self, value: Text, dispatcher: CollectingDispatcher,
                     tracker: Tracker, domain: Dict[Text,
                                                    Any]) -> Dict[Text, Any]:
        """Validate pet value."""

        if value.lower() in self.pet_db():
            # validation succeeded
            return {"pet": value}
        else:
            dispatcher.utter_template('utter_wrong_pet', tracker)
            # validation failed, set this slot to None, meaning the
            # user will be asked for the slot again
            return {"pet": None}

    def validate_time(self, value: Text, dispatcher: CollectingDispatcher,
                      tracker: Tracker, domain: Dict[Text,
                                                     Any]) -> Dict[Text, Any]:
        """Validate time value."""

        time = time_validator(value)
        if (time != None):
            return {"time": time}
        else:
            dispatcher.utter_template('utter_wrong_time', tracker)
            # validation failed, set slot to None
            return {"time": None}

    def validate_petName(self, value: Text, dispatcher: CollectingDispatcher,
                         tracker: Tracker,
                         domain: Dict[Text, Any]) -> Dict[Text, Any]:
        """Validate petName value."""
        print(value)
        return {"petName": value}

    def submit(self, dispatcher: CollectingDispatcher, tracker: Tracker,
               domain: Dict[Text, Any]) -> List[Dict]:
        """Define what the form has to do
            after all required slots are filled"""

        # utter submit template
        print("petName: " + tracker.get_slot("petName"))
        print("pet: " + tracker.get_slot("pet"))
        print("time: " + tracker.get_slot("time"))
        print("date: " + tracker.get_slot("date"))

        url = 'https://dimo1.ii.uam.es:8443/VeterinarioApi/Rasa'
        myobj = {
            'petName': tracker.get_slot("petName"),
            'pet': tracker.get_slot("pet"),
            'time': tracker.get_slot("time"),
            'date': tracker.get_slot("date"),
        }

        x = requests.post(url, json=myobj)

        print(x.text)
        dispatcher.utter_message(x.text)
        #dispatcher.utter_template('utter_submit', tracker)
        return [
            SlotSet("petName", None),
            SlotSet("pet", None),
            SlotSet("time", None),
            SlotSet("date", None)
        ]
import typing
from typing import Any, Optional, Text, Dict, List, Type
from rasa.nlu.components import Component
from rasa.nlu.config import RasaNLUModelConfig
from rasa.nlu.training_data import Message, TrainingData

if typing.TYPE_CHECKING:
    from rasa.nlu.model import Metadata

from duckling import Duckling

duck = Duckling()
duck.load()


class MyComponent(Component):
    """A new component"""

    # Which components are required by this component.
    # Listed components should appear before the component itself in the pipeline.
    @classmethod
    def required_components(cls) -> List[Type[Component]]:
        """Specify which components need to be present in the pipeline."""

        return []

    # Defines the default configuration parameters of a component
    # these values can be overwritten in the pipeline configuration
    # of the model. The component should choose sensible defaults
    # and should be able to create reasonable results with the defaults.
    defaults = {}
Exemple #8
0
class Brain:
    MODULE_BASE_PATH = 'lucia.tasks.'

    def __init__(self):
        self.model = None
        self.r = sr.Recognizer()
        self.nlp = spacy.load(conf.get_property('spacy')['model'])
        self.espeak = conf.get_property('espeak')

        # Load low-level Duckling model
        self.duckling = Duckling()
        self.duckling.load(
            languages=conf.get_property('duckling')['languages'])

        # Remember tasks
        self.task_memory = []

    def create_model(self):
        # Create a DeepSpeech model with model path
        self.model = Model(conf.get_property('deepspeech')['model_path'])
        # Enable decoding using an external scorer
        self.model.enableExternalScorer(
            conf.get_property('deepspeech')['scorer_path'])

    def listen(self, debug_mode=False):
        while True:
            with sr.Microphone(sample_rate=conf.get_property(
                    'speech_recognition')['audio_rate']) as source:
                # Listen for a while and adjust the energy threshold to start and stop recording voice to account for ambient noise
                self.r.adjust_for_ambient_noise(
                    source,
                    duration=conf.get_property(
                        'speech_recognition')['energy_threshold'])
                self.r.dynamic_energy_threshold = True

                if debug_mode is False:
                    print("Say something")
                    audio = self.r.listen(source)
                    # Speech to text
                    audio = np.frombuffer(audio.frame_data, np.int16)
                    text = self.model.stt(audio)
                    self.speak(text)
                else:
                    text = input()

                # Wake up on hearing the wake word
                #if any(subtext in text for subtext in conf.get_property('wake_words')):
                #  self.understand(text)
                self.understand(text)

    def speak(self, text):
        subprocess.call('espeak-ng -v {}+{}{} "{}"'.format(
            self.espeak['language'], self.espeak['gender'],
            self.espeak['pitch'], text),
                        shell=True)

    def understand(self, sentence):
        # Break paragraph into sentences
        tokenized_sentence = sent_tokenize(sentence)

        # Break sentence into words
        for sent in tokenized_sentence:
            tokenized_word = word_tokenize(sent)

            # Tag corpora with universal POS tagset
            # For tag list, read https://www.nltk.org/book/ch05.html#tab-universal-tagset
            pos_tags = nltk.pos_tag(tokenized_word, tagset='universal')

            # Divide sentence into noun phrases with regular expression
            grammar = 'NOUN: {<DET>?<ADJ>*<NOUN>}'
            cp = nltk.RegexpParser(grammar)
            # Find chunk structure
            cs = cp.parse(pos_tags)
            # B-{tag} beginning, I-{tag} inside, O-{tag} outside
            iob_tags = np.asarray(tree2conlltags(cs)).tolist()

            # Recognize named entities
            doc = self.nlp(sent)

            # Parse word into numeral, ordinal, and time
            parse = lambda ne: dict([[
                _['dim'], _['value']['value']
            ] for _ in self.duckling.parse(
                ne, dim_filter=conf.get_property('duckling')['dimensions'])])
            # [Word, character positions and entity type]. For all entity types, read https://spacy.io/api/annotation#named-entities
            ne = list([
                ent.text, ent.start_char, ent.end_char, ent.label_,
                parse(ent.text)
            ] for ent in doc.ents)

            ne_tags = [_.ent_type_ for _ in doc]
            # Merge iob tags and named entity tags
            tagged_sent = [
                list(np.append(iob_tags[i], ne_tags[i]))
                for i in range(len(iob_tags))
            ]
            tagged_sent = ''.join(str(x) for x in tagged_sent)

            self.decide(tagged_sent, ne)

    def think(self, pattern, tagged_sent):
        # Match tagged sentence against combinations of POS tags, words in any order: (?=.*\bword\b)(?=.*\bADJ\bNOUN\b).*
        r = re.compile(
            '(?=.*\\b' +
            pattern.replace('  ', '\\b.*\\b').replace(' ', '\\b)(?=.*\\b') +
            '\\b).*')
        return r.search(tagged_sent)

    def decide(self, tagged_sent, named_entity):
        for task in conf.get_property('tasks'):
            for pattern in conf.get_property('tasks')[task]:
                # If sentence matches any pattern, dynamtically create class
                if self.think(pattern, tagged_sent):
                    # Split module name and class name with dot
                    module = importlib.import_module(self.MODULE_BASE_PATH +
                                                     task.rsplit('.', 1)[0])
                    instance = getattr(module, task.rsplit('.', 1)[1])()
                    print(instance)

                    # Search whether task_memory contains the same class instance
                    _run = False
                    for mem in self.task_memory:
                        if type(instance) == type(mem):
                            mem.run(self, tagged_sent, named_entity)
                            _run = True
                            break
                    if not _run:
                        # If not exists, store new class instance in task_memory
                        self.task_memory = [
                            instance.run(self, tagged_sent, named_entity)
                        ] + self.task_memory

                    break
from duckling import Duckling
import calendar
import re
from datetime import datetime

present = datetime.now()
d = Duckling()
d.load()


def clean_date(date):
    date_in_no = re.sub('[a-zA-Z-:+.]', '', date)
    temp = 0
    year = ''
    month = ''
    day = ''
    for i in date_in_no:
        temp += 1
        if temp <= 4:
            year += i
        if temp == 5 or temp == 6:
            month += i
        if temp == 7 or temp == 8:
            day += i
    return year, month, day


def get_end_date(grain, date):
    date_in_no = re.sub('[a-zA-Z-:+.]', '', date)
    temp = 0
    year = ''