Exemple #1
0
def exercise():
    from dials.algorithms.indexing import compare_orientation_matrices
    from dxtbx.model import Crystal
    from cctbx import sgtbx
    from scitbx import matrix
    from scitbx.math import euler_angles as euler

    # try and see if we can get back the original rotation matrix and euler angles
    real_space_a = matrix.col((10, 0, 0))
    real_space_b = matrix.col((0, 10, 10))
    real_space_c = matrix.col((0, 0, 10))
    euler_angles = (1.3, 5.6, 7.8)
    R = matrix.sqr(
        euler.xyz_matrix(euler_angles[0], euler_angles[1], euler_angles[2]))
    crystal_a = Crystal(real_space_a,
                        real_space_b,
                        real_space_c,
                        space_group=sgtbx.space_group('P 1'))
    crystal_b = Crystal(R * real_space_a,
                        R * real_space_b,
                        R * real_space_c,
                        space_group=sgtbx.space_group('P 1'))
    assert approx_equal(
        matrix.sqr(crystal_b.get_U()) *
        matrix.sqr(crystal_a.get_U()).transpose(), R)
    best_R_ab, best_axis, best_angle, best_cb_op = \
      compare_orientation_matrices.difference_rotation_matrix_axis_angle(
        crystal_a,
        crystal_b)
    best_euler_angles = euler.xyz_angles(best_R_ab)
    assert approx_equal(best_euler_angles, euler_angles)
    assert best_cb_op.is_identity_op()
    assert approx_equal(best_R_ab, R)

    # now see if we can deconvolute the original euler angles after applying
    # a change of basis to one of the crystals
    crystal_a = Crystal(real_space_a,
                        real_space_b,
                        real_space_c,
                        space_group=sgtbx.space_group('I 2 3'))
    crystal_b = Crystal(R * real_space_a,
                        R * real_space_b,
                        R * real_space_c,
                        space_group=sgtbx.space_group('I 2 3'))
    cb_op = sgtbx.change_of_basis_op('z,x,y')
    crystal_b = crystal_b.change_basis(cb_op)
    best_R_ab, best_axis, best_angle, best_cb_op = \
      compare_orientation_matrices.difference_rotation_matrix_axis_angle(
        crystal_a,
        crystal_b)
    best_euler_angles = euler.xyz_angles(best_R_ab)
    assert approx_equal(best_euler_angles, euler_angles)
    assert best_cb_op.c() == cb_op.inverse().c()
    assert approx_equal(best_R_ab, R)
Exemple #2
0
def test_compare_orientation_matrices():
    # try and see if we can get back the original rotation matrix and euler angles
    real_space_a = matrix.col((10, 0, 0))
    real_space_b = matrix.col((0, 10, 10))
    real_space_c = matrix.col((0, 0, 10))
    euler_angles = (1.3, 5.6, 7.8)
    R = matrix.sqr(
        euler.xyz_matrix(euler_angles[0], euler_angles[1], euler_angles[2]))
    crystal_a = Crystal(real_space_a,
                        real_space_b,
                        real_space_c,
                        space_group=sgtbx.space_group('P 1'))
    crystal_b = Crystal(R * real_space_a,
                        R * real_space_b,
                        R * real_space_c,
                        space_group=sgtbx.space_group('P 1'))
    assert (matrix.sqr(crystal_b.get_U()) *
            matrix.sqr(crystal_a.get_U()).transpose()).elems == pytest.approx(
                R.elems)
    best_R_ab, best_axis, best_angle, best_cb_op = \
      compare_orientation_matrices.difference_rotation_matrix_axis_angle(
        crystal_a,
        crystal_b)
    best_euler_angles = euler.xyz_angles(best_R_ab)
    assert best_euler_angles == pytest.approx(euler_angles)
    assert best_cb_op.is_identity_op()
    assert best_R_ab.elems == pytest.approx(R.elems)

    # now see if we can deconvolute the original euler angles after applying
    # a change of basis to one of the crystals
    crystal_a = Crystal(real_space_a,
                        real_space_b,
                        real_space_c,
                        space_group=sgtbx.space_group('I 2 3'))
    crystal_b = Crystal(R * real_space_a,
                        R * real_space_b,
                        R * real_space_c,
                        space_group=sgtbx.space_group('I 2 3'))
    cb_op = sgtbx.change_of_basis_op('z,x,y')
    crystal_b = crystal_b.change_basis(cb_op)
    best_R_ab, best_axis, best_angle, best_cb_op = \
      compare_orientation_matrices.difference_rotation_matrix_axis_angle(
        crystal_a,
        crystal_b)
    best_euler_angles = euler.xyz_angles(best_R_ab)
    assert best_euler_angles == pytest.approx(euler_angles)
    assert best_cb_op.c() == cb_op.inverse().c()
    assert best_R_ab.elems == pytest.approx(R.elems)
def exercise_similarity():

    model_1 = Crystal(real_space_a=(10, 0, 0),
                      real_space_b=(0, 11, 0),
                      real_space_c=(0, 0, 12),
                      space_group_symbol="P 1")
    model_1.set_mosaicity(0.5)
    model_2 = Crystal(real_space_a=(10, 0, 0),
                      real_space_b=(0, 11, 0),
                      real_space_c=(0, 0, 12),
                      space_group_symbol="P 1")
    model_2.set_mosaicity(0.5)
    assert model_1.is_similar_to(model_2)
    model_1.set_mosaicity(-1)
    model_2.set_mosaicity(-0.5)
    assert model_1.is_similar_to(model_2)  # test ignores negative mosaicity
    model_1.set_mosaicity(0.5)
    model_2.set_mosaicity(0.63)  # outside tolerance
    assert not model_1.is_similar_to(model_2)
    model_2.set_mosaicity(0.62)  #just inside tolerance

    # orientation tests
    R = matrix.sqr(model_2.get_U())
    dr1 = matrix.col((1, 0, 0)).axis_and_angle_as_r3_rotation_matrix(0.0101,
                                                                     deg=True)
    dr2 = matrix.col((1, 0, 0)).axis_and_angle_as_r3_rotation_matrix(0.0099,
                                                                     deg=True)
    model_2.set_U(dr1 * R)
    assert not model_1.is_similar_to(model_2)  # outside tolerance
    model_2.set_U(dr2 * R)
    assert model_1.is_similar_to(model_2)  # inside tolerance

    # unit_cell.is_similar_to is tested elsewhere
    return
def test_crystal_model():
    real_space_a = matrix.col((10, 0, 0))
    real_space_b = matrix.col((0, 11, 0))
    real_space_c = matrix.col((0, 0, 12))
    model = Crystal(
        real_space_a=(10, 0, 0),
        real_space_b=(0, 11, 0),
        real_space_c=(0, 0, 12),
        space_group_symbol="P 1",
    )
    # This doesn't work as python class uctbx.unit_cell(uctbx_ext.unit_cell)
    # so C++ and python classes are different types
    # assert isinstance(model.get_unit_cell(), uctbx.unit_cell)
    assert model.get_unit_cell().parameters() == (10.0, 11.0, 12.0, 90.0, 90.0,
                                                  90.0)
    assert approx_equal(model.get_A(),
                        (1 / 10, 0, 0, 0, 1 / 11, 0, 0, 0, 1 / 12))
    assert approx_equal(
        matrix.sqr(model.get_A()).inverse(), (10, 0, 0, 0, 11, 0, 0, 0, 12))
    assert approx_equal(model.get_B(), model.get_A())
    assert approx_equal(model.get_U(), (1, 0, 0, 0, 1, 0, 0, 0, 1))
    assert approx_equal(model.get_real_space_vectors(),
                        (real_space_a, real_space_b, real_space_c))
    assert (model.get_crystal_symmetry().unit_cell().parameters() ==
            model.get_unit_cell().parameters())
    assert model.get_crystal_symmetry().space_group() == model.get_space_group(
    )

    model2 = Crystal(
        real_space_a=(10, 0, 0),
        real_space_b=(0, 11, 0),
        real_space_c=(0, 0, 12),
        space_group_symbol="P 1",
    )
    assert model == model2

    model2a = Crystal(model.get_A(), model.get_space_group())
    assert model == model2a

    model2b = Crystal(
        matrix.sqr(model.get_A()).inverse().elems,
        model.get_space_group().type().lookup_symbol(),
        reciprocal=False,
    )
    assert model == model2b

    # rotate 45 degrees about x-axis
    R1 = matrix.sqr((
        1,
        0,
        0,
        0,
        math.cos(math.pi / 4),
        -math.sin(math.pi / 4),
        0,
        math.sin(math.pi / 4),
        math.cos(math.pi / 4),
    ))
    # rotate 30 degrees about y-axis
    R2 = matrix.sqr((
        math.cos(math.pi / 6),
        0,
        math.sin(math.pi / 6),
        0,
        1,
        0,
        -math.sin(math.pi / 6),
        0,
        math.cos(math.pi / 6),
    ))
    # rotate 60 degrees about z-axis
    R3 = matrix.sqr((
        math.cos(math.pi / 3),
        -math.sin(math.pi / 3),
        0,
        math.sin(math.pi / 3),
        math.cos(math.pi / 3),
        0,
        0,
        0,
        1,
    ))
    R = R1 * R2 * R3
    model.set_U(R)
    # B is unchanged
    assert approx_equal(model.get_B(),
                        (1 / 10, 0, 0, 0, 1 / 11, 0, 0, 0, 1 / 12))
    assert approx_equal(model.get_U(), R)
    assert approx_equal(model.get_A(),
                        matrix.sqr(model.get_U()) * matrix.sqr(model.get_B()))
    a_, b_, c_ = model.get_real_space_vectors()
    assert approx_equal(a_, R * real_space_a)
    assert approx_equal(b_, R * real_space_b)
    assert approx_equal(c_, R * real_space_c)
    assert (str(model).replace("-0.0000", " 0.0000") == """\
Crystal:
    Unit cell: (10.000, 11.000, 12.000, 90.000, 90.000, 90.000)
    Space group: P 1
    U matrix:  {{ 0.4330, -0.7500,  0.5000},
                { 0.7891,  0.0474, -0.6124},
                { 0.4356,  0.6597,  0.6124}}
    B matrix:  {{ 0.1000,  0.0000,  0.0000},
                { 0.0000,  0.0909,  0.0000},
                { 0.0000,  0.0000,  0.0833}}
    A = UB:    {{ 0.0433, -0.0682,  0.0417},
                { 0.0789,  0.0043, -0.0510},
                { 0.0436,  0.0600,  0.0510}}
""")
    model.set_B((1 / 12, 0, 0, 0, 1 / 12, 0, 0, 0, 1 / 12))
    assert approx_equal(model.get_unit_cell().parameters(),
                        (12, 12, 12, 90, 90, 90))

    U = matrix.sqr((0.3455, -0.2589, -0.9020, 0.8914, 0.3909, 0.2293, 0.2933,
                    -0.8833, 0.3658))
    B = matrix.sqr((1 / 13, 0, 0, 0, 1 / 13, 0, 0, 0, 1 / 13))
    model.set_A(U * B)
    assert approx_equal(model.get_A(), U * B)
    assert approx_equal(model.get_U(), U, 1e-4)
    assert approx_equal(model.get_B(), B, 1e-5)

    model3 = Crystal(
        real_space_a=(10, 0, 0),
        real_space_b=(0, 11, 0),
        real_space_c=(0, 0, 12),
        space_group=sgtbx.space_group_info("P 222").group(),
    )
    assert model3.get_space_group().type().hall_symbol() == " P 2 2"
    assert model != model3
    #
    sgi_ref = sgtbx.space_group_info(number=230)
    model_ref = Crystal(
        real_space_a=(44, 0, 0),
        real_space_b=(0, 44, 0),
        real_space_c=(0, 0, 44),
        space_group=sgi_ref.group(),
    )
    assert approx_equal(model_ref.get_U(), (1, 0, 0, 0, 1, 0, 0, 0, 1))
    assert approx_equal(model_ref.get_B(),
                        (1 / 44, 0, 0, 0, 1 / 44, 0, 0, 0, 1 / 44))
    assert approx_equal(model_ref.get_A(), model_ref.get_B())
    assert approx_equal(model_ref.get_unit_cell().parameters(),
                        (44, 44, 44, 90, 90, 90))
    a_ref, b_ref, c_ref = map(matrix.col, model_ref.get_real_space_vectors())
    cb_op_to_primitive = sgi_ref.change_of_basis_op_to_primitive_setting()
    model_primitive = model_ref.change_basis(cb_op_to_primitive)
    cb_op_to_reference = (model_primitive.get_space_group().info().
                          change_of_basis_op_to_reference_setting())
    a_prim, b_prim, c_prim = map(matrix.col,
                                 model_primitive.get_real_space_vectors())
    assert (cb_op_to_primitive.as_abc() ==
            "-1/2*a+1/2*b+1/2*c,1/2*a-1/2*b+1/2*c,1/2*a+1/2*b-1/2*c")
    assert approx_equal(a_prim, -1 / 2 * a_ref + 1 / 2 * b_ref + 1 / 2 * c_ref)
    assert approx_equal(b_prim, 1 / 2 * a_ref - 1 / 2 * b_ref + 1 / 2 * c_ref)
    assert approx_equal(c_prim, 1 / 2 * a_ref + 1 / 2 * b_ref - 1 / 2 * c_ref)
    assert cb_op_to_reference.as_abc() == "b+c,a+c,a+b"
    assert approx_equal(a_ref, b_prim + c_prim)
    assert approx_equal(b_ref, a_prim + c_prim)
    assert approx_equal(c_ref, a_prim + b_prim)
    assert approx_equal(
        model_primitive.get_U(),
        [
            -0.5773502691896258,
            0.40824829046386285,
            0.7071067811865476,
            0.5773502691896257,
            -0.4082482904638631,
            0.7071067811865476,
            0.5773502691896257,
            0.8164965809277259,
            0.0,
        ],
    )
    assert approx_equal(
        model_primitive.get_B(),
        [
            0.0262431940540739,
            0.0,
            0.0,
            0.00927837023781507,
            0.02783511071344521,
            0.0,
            0.01607060866333063,
            0.01607060866333063,
            0.03214121732666125,
        ],
    )
    assert approx_equal(
        model_primitive.get_A(),
        (0, 1 / 44, 1 / 44, 1 / 44, 0, 1 / 44, 1 / 44, 1 / 44, 0),
    )
    assert approx_equal(
        model_primitive.get_unit_cell().parameters(),
        [
            38.1051177665153,
            38.1051177665153,
            38.1051177665153,
            109.47122063449069,
            109.47122063449069,
            109.47122063449069,
        ],
    )
    assert model_ref != model_primitive
    model_ref_recycled = model_primitive.change_basis(cb_op_to_reference)
    assert approx_equal(model_ref.get_U(), model_ref_recycled.get_U())
    assert approx_equal(model_ref.get_B(), model_ref_recycled.get_B())
    assert approx_equal(model_ref.get_A(), model_ref_recycled.get_A())
    assert approx_equal(
        model_ref.get_unit_cell().parameters(),
        model_ref_recycled.get_unit_cell().parameters(),
    )
    assert model_ref == model_ref_recycled

    uc = uctbx.unit_cell(
        (58.2567, 58.1264, 39.7093, 46.9077, 46.8612, 62.1055))
    sg = sgtbx.space_group_info(symbol="P1").group()
    cs = crystal.symmetry(unit_cell=uc, space_group=sg)
    cb_op_to_minimum = cs.change_of_basis_op_to_minimum_cell()
    # the reciprocal matrix
    B = matrix.sqr(uc.fractionalization_matrix()).transpose()
    U = random_rotation()
    direct_matrix = (U * B).inverse()
    model = Crystal(direct_matrix[:3],
                    direct_matrix[3:6],
                    direct_matrix[6:9],
                    space_group=sg)
    assert uc.is_similar_to(model.get_unit_cell())
    uc_minimum = uc.change_basis(cb_op_to_minimum)
    model_minimum = model.change_basis(cb_op_to_minimum)
    assert uc_minimum.is_similar_to(model_minimum.get_unit_cell())
    assert model_minimum != model
    model_minimum.update(model)
    assert model_minimum == model  # lgtm

    A_static = matrix.sqr(model.get_A())
    A_as_scan_points = [A_static]
    num_scan_points = 11
    for i in range(num_scan_points - 1):
        A_as_scan_points.append(
            A_as_scan_points[-1] *
            matrix.sqr(euler_angles.xyz_matrix(0.1, 0.2, 0.3)))
    model.set_A_at_scan_points(A_as_scan_points)
    model_minimum = model.change_basis(cb_op_to_minimum)
    assert model.num_scan_points == model_minimum.num_scan_points == num_scan_points
    M = matrix.sqr(cb_op_to_minimum.c_inv().r().transpose().as_double())
    M_inv = M.inverse()
    for i in range(num_scan_points):
        A_orig = matrix.sqr(model.get_A_at_scan_point(i))
        A_min = matrix.sqr(model_minimum.get_A_at_scan_point(i))
        assert approx_equal(A_min, A_orig * M_inv)
    assert model.get_unit_cell().parameters() == pytest.approx(
        (58.2567, 58.1264, 39.7093, 46.9077, 46.8612, 62.1055))
    uc = uctbx.unit_cell((10, 11, 12, 91, 92, 93))
    model.set_unit_cell(uc)
    assert model.get_unit_cell().parameters() == pytest.approx(uc.parameters())
def test_check_old_vs_new():
    from dxtbx.tests.model.crystal_model_old import crystal_model_old

    model_1 = Crystal(
        real_space_a=(10, 0, 0),
        real_space_b=(0, 11, 0),
        real_space_c=(0, 0, 12),
        space_group_symbol="P 1",
    )

    model_2 = crystal_model_old(
        real_space_a=(10, 0, 0),
        real_space_b=(0, 11, 0),
        real_space_c=(0, 0, 12),
        space_group_symbol="P 1",
    )

    cov_B = matrix.sqr([1] * (9 * 9))

    model_1.set_B_covariance(cov_B)
    model_2.set_B_covariance(cov_B)

    A_list = [model_1.get_A() for i in range(20)]

    model_1.set_A_at_scan_points(A_list)
    model_2.set_A_at_scan_points(A_list)

    A1 = model_1.get_A()
    A2 = model_2.get_A()
    U1 = model_1.get_U()
    U2 = model_2.get_U()
    B1 = model_1.get_B()
    B2 = model_2.get_B()
    UC1 = model_1.get_unit_cell()
    UC2 = model_2.get_unit_cell()
    RSV1 = model_1.get_real_space_vectors()
    RSV2 = model_2.get_real_space_vectors()
    SG1 = model_1.get_space_group()
    SG2 = model_2.get_space_group()

    assert model_1.num_scan_points == model_2.num_scan_points

    A_list_1 = [
        model_1.get_A_at_scan_point(i)
        for i in range(model_1.get_num_scan_points())
    ]
    A_list_2 = [
        model_2.get_A_at_scan_point(i)
        for i in range(model_1.get_num_scan_points())
    ]
    B_list_1 = [
        model_1.get_B_at_scan_point(i)
        for i in range(model_1.get_num_scan_points())
    ]
    B_list_2 = [
        model_2.get_B_at_scan_point(i)
        for i in range(model_1.get_num_scan_points())
    ]
    U_list_1 = [
        model_1.get_U_at_scan_point(i)
        for i in range(model_1.get_num_scan_points())
    ]
    U_list_2 = [
        model_2.get_U_at_scan_point(i)
        for i in range(model_1.get_num_scan_points())
    ]

    assert approx_equal(A1, A2)
    assert approx_equal(B1, B2)
    assert approx_equal(U1, U2)
    assert approx_equal(UC1.parameters(), UC2.parameters())
    assert approx_equal(RSV1[0], RSV2[0])
    assert approx_equal(RSV1[1], RSV2[1])
    assert approx_equal(RSV1[2], RSV2[2])
    assert str(SG1.info()) == str(SG2.info())

    for i in range(model_1.get_num_scan_points()):
        assert approx_equal(A_list_1[i], A_list_2[i])
        assert approx_equal(B_list_1[i], B_list_2[i])
        assert approx_equal(U_list_1[i], U_list_2[i])

    cell_sd_1 = model_1.get_cell_parameter_sd()
    cell_sd_2 = model_2.get_cell_parameter_sd()
    cell_volume_sd_1 = model_1.get_cell_volume_sd()
    cell_volume_sd_2 = model_2.get_cell_volume_sd()
    covB1 = model_1.get_B_covariance()
    covB2 = model_1.get_B_covariance()

    assert approx_equal(covB1, covB2)
    assert approx_equal(cell_volume_sd_1, cell_volume_sd_2)
    assert approx_equal(cell_sd_1, cell_sd_2)
Exemple #6
0
def write_par_file(file_name, experiment):
    from dxtbx.model import Crystal
    from iotbx.mtz.extract_from_symmetry_lib import ccp4_symbol
    from rstbx.cftbx.coordinate_frame_helpers import align_reference_frame
    from scitbx import matrix

    imageset = experiment.imageset
    detector = imageset.get_detector()
    goniometer = imageset.get_goniometer()
    beam = imageset.get_beam()
    scan = imageset.get_scan()

    R_to_mosflm = align_reference_frame(beam.get_s0(), (1.0, 0.0, 0.0),
                                        goniometer.get_rotation_axis(),
                                        (0.0, 0.0, 1.0))

    cryst = experiment.crystal
    cryst = cryst.change_basis(cryst.get_space_group().info().
                               change_of_basis_op_to_reference_setting())
    A = matrix.sqr(cryst.get_A())
    A_inv = A.inverse()

    real_space_a = R_to_mosflm * A_inv.elems[:3]
    real_space_b = R_to_mosflm * A_inv.elems[3:6]
    real_space_c = R_to_mosflm * A_inv.elems[6:9]

    cryst_mosflm = Crystal(real_space_a,
                           real_space_b,
                           real_space_c,
                           space_group=cryst.get_space_group())
    U_mosflm = matrix.sqr(cryst_mosflm.get_U())
    B_mosflm = matrix.sqr(cryst_mosflm.get_B())
    UB_mosflm = U_mosflm * B_mosflm
    uc_params = cryst_mosflm.get_unit_cell().parameters()
    assert U_mosflm.is_r3_rotation_matrix(), U_mosflm

    beam_centre = tuple(reversed(detector[0].get_beam_centre(beam.get_s0())))
    distance = detector[0].get_directed_distance()
    polarization = R_to_mosflm * matrix.col(beam.get_polarization_normal())
    rotation = matrix.col(goniometer.get_rotation_axis())
    if rotation.angle(matrix.col(
            detector[0].get_fast_axis())) < rotation.angle(
                matrix.col(detector[0].get_slow_axis())):
        direction = "FAST"
    else:
        direction = "SLOW"
    rotation = R_to_mosflm * rotation

    # Calculate average spot diameter for SEPARATION parameter
    # http://xds.mpimf-heidelberg.mpg.de/html_doc/xds_parameters.html
    # BEAM_DIVERGENCE=
    # This value is approximately arctan(spot diameter/DETECTOR_DISTANCE)
    profile = experiment.profile
    spot_diameter = math.tan(profile.delta_b() * math.pi / 180) * distance
    spot_diameter_px = spot_diameter * detector[0].get_pixel_size()[0]

    # determine parameters for RASTER keyword
    # http://www.mrc-lmb.cam.ac.uk/harry/cgi-bin/keyword2.cgi?RASTER

    # NXS, NYS (odd integers) define the overall dimensions of the rectangular array of pixels for each spot
    # NXS and NYS are set to twice the spot size plus 5 pixels
    nxs = 2 * int(math.ceil(spot_diameter_px)) + 5
    nys = nxs

    # NRX, NRY are the number of columns or rows of points in the background rim
    # NRX and NRY are set to half the spot size plus 2 pixels
    nrx = int(math.ceil(0.5 * spot_diameter_px)) + 2
    nry = nrx

    # NC the corner background cut-off which corresponds to a half-square of side NC points
    # NC is set to the mean of the spot size in X and Y plus 4
    nc = int(math.ceil(spot_diameter_px)) + 4

    def space_group_symbol(space_group):
        symbol = ccp4_symbol(space_group.info(),
                             lib_name="syminfo.lib",
                             require_at_least_one_lib=False)
        if symbol != "P 1":
            symbol = symbol.replace(" 1", "")
        symbol = symbol.replace(" ", "")
        return symbol

    logger.info("Saving BEST parameter file to %s", file_name)
    with open(file_name, "w") as f:
        print("# parameter file for BEST", file=f)
        print("TITLE          From DIALS", file=f)
        print("DETECTOR       PILA", file=f)
        print("SITE           Not set", file=f)
        print(
            "DIAMETER       %6.2f" % (max(detector[0].get_image_size()) *
                                      detector[0].get_pixel_size()[0]),
            file=f,
        )
        print(f"PIXEL          {round(detector[0].get_pixel_size()[0], 10)}",
              file=f)
        print("ROTAXIS        %4.2f %4.2f %4.2f" % rotation.elems,
              direction,
              file=f)
        print("POLAXIS        %4.2f %4.2f %4.2f" % polarization.elems, file=f)
        print("GAIN               1.00", file=f)  # correct for Pilatus images
        # http://strucbio.biologie.uni-konstanz.de/xdswiki/index.php/FAQ#You_said_that_the_XDS_deals_with_high_mosaicity._How_high_mosaicity_is_still_manageable.3F
        # http://journals.iucr.org/d/issues/2012/01/00/wd5161/index.html
        # Transform from XDS definition of sigma_m to FWHM (MOSFLM mosaicity definition)
        print(f"CMOSAIC            {experiment.profile.sigma_m() * 2.355:.2f}",
              file=f)
        print(f"PHISTART           {scan.get_oscillation_range()[0]:.2f}",
              file=f)
        print(f"PHIWIDTH           {scan.get_oscillation()[1]:.2f}", file=f)
        print(f"DISTANCE        {distance:7.2f}", file=f)
        print(f"WAVELENGTH      {beam.get_wavelength():.5f}", file=f)
        print(f"POLARISATION    {beam.get_polarization_fraction():7.5f}",
              file=f)
        print(f"SYMMETRY       {space_group_symbol(cryst.get_space_group())}",
              file=f)
        print("UB             %9.6f %9.6f %9.6f" % UB_mosflm[:3], file=f)
        print("               %9.6f %9.6f %9.6f" % UB_mosflm[3:6], file=f)
        print("               %9.6f %9.6f %9.6f" % UB_mosflm[6:], file=f)
        print("CELL           %8.2f %8.2f %8.2f %6.2f %6.2f %6.2f" % uc_params,
              file=f)
        print("RASTER           %i %i %i %i %i" % (nxs, nys, nc, nrx, nry),
              file=f)
        print(f"SEPARATION      {spot_diameter:.3f}  {spot_diameter:.3f}",
              file=f)
        print("BEAM           %8.3f %8.3f" % beam_centre, file=f)
        print("# end of parameter file for BEST", file=f)
Exemple #7
0
def dump(experiments, directory):
    """
    Dump the experiments in mosflm format

    :param experiments: The experiments to dump
    :param directory: The directory to write to
    """
    for i, experiment in enumerate(experiments):
        suffix = ""
        if len(experiments) > 1:
            suffix = "_%i" % (i + 1)

        sub_dir = "%s%s" % (directory, suffix)
        if not os.path.isdir(sub_dir):
            os.makedirs(sub_dir)
        detector = experiment.detector
        beam = experiment.beam
        goniometer = experiment.goniometer

        # XXX imageset is getting the experimental geometry from the image files
        # rather than the input models.expt file
        imageset = experiment.imageset

        R_to_mosflm = align_reference_frame(
            beam.get_s0(),
            (1.0, 0.0, 0.0),
            goniometer.get_rotation_axis(),
            (0.0, 0.0, 1.0),
        )

        cryst = experiment.crystal
        cryst = cryst.change_basis(cryst.get_space_group().info().
                                   change_of_basis_op_to_reference_setting())
        A = matrix.sqr(cryst.get_A())
        A_inv = A.inverse()

        real_space_a = R_to_mosflm * A_inv.elems[:3]
        real_space_b = R_to_mosflm * A_inv.elems[3:6]
        real_space_c = R_to_mosflm * A_inv.elems[6:9]

        cryst_mosflm = Crystal(
            real_space_a,
            real_space_b,
            real_space_c,
            space_group=cryst.get_space_group(),
        )
        A_mosflm = matrix.sqr(cryst_mosflm.get_A())
        U_mosflm = matrix.sqr(cryst_mosflm.get_U())
        assert U_mosflm.is_r3_rotation_matrix(), U_mosflm
        w = beam.get_wavelength()

        index_mat = os.path.join(sub_dir, "index.mat")
        mosflm_in = os.path.join(sub_dir, "mosflm.in")
        print("Exporting experiment to %s and %s" % (index_mat, mosflm_in))

        with open(index_mat, "w") as f:
            f.write(
                format_mosflm_mat(w * A_mosflm, U_mosflm,
                                  cryst.get_unit_cell()))

        img_dir, template = os.path.split(imageset.get_template())
        symmetry = cryst_mosflm.get_space_group().type().number()
        beam_centre = tuple(
            reversed(detector[0].get_beam_centre(beam.get_s0())))
        distance = detector[0].get_directed_distance()

        with open(mosflm_in, "w") as f:
            f.write(
                write_mosflm_input(
                    directory=img_dir,
                    template=template,
                    symmetry=symmetry,
                    beam_centre=beam_centre,
                    distance=distance,
                    mat_file="index.mat",
                ))
Exemple #8
0
def test_compare_example():
    experiments = ExperimentListFactory.from_json(json_is, check_format=False)

    for experiment in experiments:
        header = {
            "DIM": "2",
            "DENZO_X_BEAM": "97.185",
            "RANK": "0",
            "PREFIX": "step5_000009",
            "BEAM_CENTER_Y": "97.13",
            "BEAM_CENTER_X": "97.13",
            "WAVELENGTH": "1.30432",
            "OSC_START": "0",
            "ADC_OFFSET": "10",
            "BYTE_ORDER": "little_endian",
            "DIRECT_SPACE_ABC":
            "2.7790989649304656,3.721227037283121,0.616256870237976,-4.231398741367156,1.730877297917864,1.0247061633019547,2.9848502901631253,-4.645083818143041,28.595825588147285",
            "OSC_RANGE": "0",
            "DIALS_ORIGIN": "-97.185,97.185,-50",
            "MOSFLM_CENTER_X": "97.13",
            "MOSFLM_CENTER_Y": "97.13",
            "CLOSE_DISTANCE": "50",
            "BEAMLINE": "fake",
            "TWOTHETA": "0",
            "ADXV_CENTER_Y": "96.965",
            "ADXV_CENTER_X": "97.185",
            "HEADER_BYTES": "1024",
            "DETECTOR_SN": "000",
            "DISTANCE": "50",
            "PHI": "0",
            "SIZE1": "1765",
            "SIZE2": "1765",
            "XDS_ORGX": "884",
            "XDS_ORGY": "884",
            "DENZO_Y_BEAM": "97.185",
            "TIME": "1",
            "TYPE": "unsigned_short",
            "PIXEL_SIZE": "0.11",
        }
        # the header of the simulated image, containing ground truth orientation

        rsabc = (sqr([float(v)
                      for v in header["DIRECT_SPACE_ABC"].split(",")]) *
                 permute.inverse())
        rsa = rsabc[0:3]
        rsb = rsabc[3:6]
        rsc = rsabc[6:9]
        header_cryst = Crystal(rsa, rsb, rsc,
                               "P1").change_basis(CB_OP_C_P.inverse())
        header_cryst.set_space_group(experiment.crystal.get_space_group())
        print("Header crystal")
        print(header_cryst)

        expt_crystal = experiment.crystal
        print("Integrated crystal")
        print(expt_crystal)

        header_ori = crystal_orientation.crystal_orientation(
            header_cryst.get_A(), crystal_orientation.basis_type.reciprocal)
        expt_ori = crystal_orientation.crystal_orientation(
            expt_crystal.get_A(), crystal_orientation.basis_type.reciprocal)

        print("Converted to cctbx")
        header_ori.show()
        expt_ori.show()

        # assert the equivalence between dxtbx crystal object and the cctbx crystal_orientation object
        assert approx_equal(header_cryst.get_U(), header_ori.get_U_as_sqr())
        assert approx_equal(header_cryst.get_A(),
                            header_ori.reciprocal_matrix())
        assert approx_equal(
            header_cryst.get_B(),
            sqr(header_ori.unit_cell().fractionalization_matrix()).transpose(),
        )

        assert approx_equal(expt_crystal.get_U(), expt_ori.get_U_as_sqr())
        assert approx_equal(expt_crystal.get_A(), expt_ori.reciprocal_matrix())
        assert approx_equal(
            expt_crystal.get_B(),
            sqr(expt_ori.unit_cell().fractionalization_matrix()).transpose(),
        )

        cb_op_align = sqr(
            expt_ori.best_similarity_transformation(header_ori, 50, 1))

        print("XYZ angles",
              cb_op_align.r3_rotation_matrix_as_x_y_z_angles(deg=True))
        aligned_ori = expt_ori.change_basis(cb_op_align)

        U_integrated = aligned_ori.get_U_as_sqr()
        U_ground_truth = header_ori.get_U_as_sqr()

        missetting_rot = U_integrated * U_ground_truth.inverse()
        print("determinant", missetting_rot.determinant())
        assert approx_equal(missetting_rot.determinant(), 1.0)
        assert missetting_rot.is_r3_rotation_matrix()

        (
            angle,
            axis,
        ) = missetting_rot.r3_rotation_matrix_as_unit_quaternion(
        ).unit_quaternion_as_axis_and_angle(deg=True)
        print("Angular offset is %13.10f deg." % (angle))

        assert approx_equal(angle, 0.2609472065)
def test_compare_orientation_matrices():
    # try and see if we can get back the original rotation matrix and euler angles
    real_space_a = matrix.col((10, 0, 0))
    real_space_b = matrix.col((0, 10, 10))
    real_space_c = matrix.col((0, 0, 10))
    euler_angles = (1.3, 5.6, 7.8)
    R = matrix.sqr(
        euler.xyz_matrix(euler_angles[0], euler_angles[1], euler_angles[2]))
    crystal_a = Crystal(real_space_a,
                        real_space_b,
                        real_space_c,
                        space_group=sgtbx.space_group("P 1"))
    crystal_b = Crystal(
        R * real_space_a,
        R * real_space_b,
        R * real_space_c,
        space_group=sgtbx.space_group("P 1"),
    )
    assert (matrix.sqr(crystal_b.get_U()) *
            matrix.sqr(crystal_a.get_U()).transpose()).elems == pytest.approx(
                R.elems)
    (
        best_R_ab,
        best_axis,
        best_angle,
        best_cb_op,
    ) = compare_orientation_matrices.difference_rotation_matrix_axis_angle(
        crystal_a, crystal_b)
    best_euler_angles = euler.xyz_angles(best_R_ab)
    assert best_euler_angles == pytest.approx(euler_angles)
    assert best_cb_op.is_identity_op()
    assert best_R_ab.elems == pytest.approx(R.elems)

    # now see if we can deconvolute the original euler angles after applying
    # a change of basis to one of the crystals
    crystal_a = Crystal(real_space_a,
                        real_space_b,
                        real_space_c,
                        space_group=sgtbx.space_group("I 2 3"))
    cb_op = sgtbx.change_of_basis_op("z,x,y")
    crystal_b = Crystal(
        R * real_space_a,
        R * real_space_b,
        R * real_space_c,
        space_group=sgtbx.space_group("I 2 3"),
    ).change_basis(cb_op)
    (
        best_R_ab,
        best_axis,
        best_angle,
        best_cb_op,
    ) = compare_orientation_matrices.difference_rotation_matrix_axis_angle(
        crystal_a, crystal_b)
    best_euler_angles = euler.xyz_angles(best_R_ab)
    assert best_euler_angles == pytest.approx(euler_angles)
    assert best_cb_op.c() == cb_op.inverse().c()
    assert best_R_ab.elems == pytest.approx(R.elems)

    crystal_c = crystal_b.change_basis(sgtbx.change_of_basis_op("-y,-z,x"))
    assert crystal_c != crystal_b

    s = compare_orientation_matrices.rotation_matrix_differences(
        [crystal_a, crystal_b, crystal_c], comparison="pairwise")
    s = "\n".join(s.splitlines()[:-1]).replace("-0.000", "0.000")
    print(s)
    assert (s == """\
Change of basis op: b,c,a
Rotation matrix to transform crystal 1 to crystal 2:
{{0.986, -0.135, 0.098},
 {0.138, 0.990, -0.023},
 {-0.094, 0.036, 0.995}}
Rotation of 9.738 degrees about axis (0.172, 0.565, 0.807)

Change of basis op: -a,-b,c
Rotation matrix to transform crystal 1 to crystal 3:
{{0.986, -0.135, 0.098},
 {0.138, 0.990, -0.023},
 {-0.094, 0.036, 0.995}}
Rotation of 9.738 degrees about axis (0.172, 0.565, 0.807)

Change of basis op: c,-a,-b
Rotation matrix to transform crystal 2 to crystal 3:
{{1.000, 0.000, 0.000},
 {0.000, 1.000, 0.000},
 {0.000, 0.000, 1.000}}""")

    s = compare_orientation_matrices.rotation_matrix_differences(
        [crystal_a, crystal_b, crystal_c], comparison="sequential")
    s = "\n".join(s.splitlines()[:-1]).replace("-0.000", "0.000")
    print(s)
    assert (s == """\
Change of basis op: b,c,a
Rotation matrix to transform crystal 1 to crystal 2:
{{0.986, -0.135, 0.098},
 {0.138, 0.990, -0.023},
 {-0.094, 0.036, 0.995}}
Rotation of 9.738 degrees about axis (0.172, 0.565, 0.807)

Change of basis op: c,-a,-b
Rotation matrix to transform crystal 2 to crystal 3:
{{1.000, 0.000, 0.000},
 {0.000, 1.000, 0.000},
 {0.000, 0.000, 1.000}}""")

    s = compare_orientation_matrices.rotation_matrix_differences(
        (crystal_a, crystal_b), miller_indices=((1, 0, 0), (1, 1, 0)))
    assert (s == """\
Change of basis op: b,c,a
Rotation matrix to transform crystal 1 to crystal 2:
{{0.986, -0.135, 0.098},
 {0.138, 0.990, -0.023},
 {-0.094, 0.036, 0.995}}
Rotation of 9.738 degrees about axis (0.172, 0.565, 0.807)
(1,0,0): 15.26 deg
(1,1,0): 9.12 deg
""")
def test_compare_example():
    experiments = ExperimentListFactory.from_json(json_is, check_format=False)

    for experiment in experiments:
        header = {
            'DIM': '2',
            'DENZO_X_BEAM': '97.185',
            'RANK': '0',
            'PREFIX': 'step5_000009',
            'BEAM_CENTER_Y': '97.13',
            'BEAM_CENTER_X': '97.13',
            'WAVELENGTH': '1.30432',
            'OSC_START': '0',
            'ADC_OFFSET': '10',
            'BYTE_ORDER': 'little_endian',
            'DIRECT_SPACE_ABC':
            '2.7790989649304656,3.721227037283121,0.616256870237976,-4.231398741367156,1.730877297917864,1.0247061633019547,2.9848502901631253,-4.645083818143041,28.595825588147285',
            'OSC_RANGE': '0',
            'DIALS_ORIGIN': '-97.185,97.185,-50',
            'MOSFLM_CENTER_X': '97.13',
            'MOSFLM_CENTER_Y': '97.13',
            'CLOSE_DISTANCE': '50',
            'BEAMLINE': 'fake',
            'TWOTHETA': '0',
            'ADXV_CENTER_Y': '96.965',
            'ADXV_CENTER_X': '97.185',
            'HEADER_BYTES': '1024',
            'DETECTOR_SN': '000',
            'DISTANCE': '50',
            'PHI': '0',
            'SIZE1': '1765',
            'SIZE2': '1765',
            'XDS_ORGX': '884',
            'XDS_ORGY': '884',
            'DENZO_Y_BEAM': '97.185',
            'TIME': '1',
            'TYPE': 'unsigned_short',
            'PIXEL_SIZE': '0.11'
        }
        # the header of the simulated image, containing ground truth orientation

        rsabc = sqr([float(v) for v in header['DIRECT_SPACE_ABC'].split(',')
                     ]) * permute.inverse()
        rsa = rsabc[0:3]
        rsb = rsabc[3:6]
        rsc = rsabc[6:9]
        header_cryst = Crystal(rsa, rsb, rsc,
                               'P1').change_basis(CB_OP_C_P.inverse())
        header_cryst.set_space_group(experiment.crystal.get_space_group())
        print('Header crystal')
        print(header_cryst)

        expt_crystal = experiment.crystal
        print('Integrated crystal')
        print(expt_crystal)

        header_ori = crystal_orientation.crystal_orientation(
            header_cryst.get_A(), crystal_orientation.basis_type.reciprocal)
        expt_ori = crystal_orientation.crystal_orientation(
            expt_crystal.get_A(), crystal_orientation.basis_type.reciprocal)

        print('Converted to cctbx')
        header_ori.show()
        expt_ori.show()

        # assert the equivalence between dxtbx crystal object and the cctbx crystal_orientation object
        assert approx_equal(header_cryst.get_U(), header_ori.get_U_as_sqr())
        assert approx_equal(header_cryst.get_A(),
                            header_ori.reciprocal_matrix())
        assert approx_equal(
            header_cryst.get_B(),
            sqr(header_ori.unit_cell().fractionalization_matrix()).transpose())

        assert approx_equal(expt_crystal.get_U(), expt_ori.get_U_as_sqr())
        assert approx_equal(expt_crystal.get_A(), expt_ori.reciprocal_matrix())
        assert approx_equal(
            expt_crystal.get_B(),
            sqr(expt_ori.unit_cell().fractionalization_matrix()).transpose())

        cb_op_align = sqr(
            expt_ori.best_similarity_transformation(header_ori, 50, 1))

        print('XYZ angles',
              cb_op_align.r3_rotation_matrix_as_x_y_z_angles(deg=True))
        aligned_ori = expt_ori.change_basis(cb_op_align)

        U_integrated = aligned_ori.get_U_as_sqr()
        U_ground_truth = header_ori.get_U_as_sqr()

        missetting_rot = U_integrated * U_ground_truth.inverse()
        print("determinant", missetting_rot.determinant())
        assert approx_equal(missetting_rot.determinant(), 1.0)
        assert missetting_rot.is_r3_rotation_matrix()

        angle, axis = missetting_rot.r3_rotation_matrix_as_unit_quaternion(
        ).unit_quaternion_as_axis_and_angle(deg=True)
        print("Angular offset is %13.10f deg." % (angle))

        assert approx_equal(angle, 0.2609472065)