Exemple #1
0
    def generate_reflections(self):
        # Build a mock scan for a 3 degree sweep
        from dxtbx.model import ScanFactory
        sf = ScanFactory()
        self.scan = sf.make_scan(image_range=(1, 1),
                                 exposure_times=0.1,
                                 oscillation=(0, 3.0),
                                 epochs=range(1),
                                 deg=True)
        sweep_range = self.scan.get_oscillation_range(deg=False)

        # Create a scans ExperimentList, only for generating reflections
        experiments = ExperimentList()
        experiments.append(
            Experiment(beam=self.beam,
                       detector=self.detector,
                       goniometer=self.gonio,
                       scan=self.scan,
                       crystal=self.crystal,
                       imageset=None))

        # Create a ScansRayPredictor
        ray_predictor = ScansRayPredictor(experiments, sweep_range)

        # Generate rays - only to work out which hkls are predicted
        resolution = 2.0
        index_generator = IndexGenerator(
            self.crystal.get_unit_cell(),
            space_group(space_group_symbols(1).hall()).type(), resolution)
        indices = index_generator.to_array()
        rays = ray_predictor(indices)

        # Make a standard reflection_table and copy in the ray data
        self.reflections = flex.reflection_table.empty_standard(len(rays))
        self.reflections.update(rays)
def experiment():
    beam = BeamFactory.make_beam(wavelength=0.97625, sample_to_source=(0, 0, 1))

    detector = DetectorFactory.simple(
        sensor="PAD",
        distance=265.27,
        beam_centre=(210.7602, 205.27684),
        fast_direction="+x",
        slow_direction="-y",
        pixel_size=(0.172, 0.172),
        image_size=(2463, 2527),
        trusted_range=(-1, 1e8),
    )

    goniometer = GoniometerFactory.single_axis()

    scan = ScanFactory.make_scan(
        image_range=(1, 20),
        exposure_times=0.067,
        oscillation=(82, 0.15),
        epochs=[0] * 20,
    )

    isetdata = ImageSetData(
        reader=Format.Reader(None, ["path"] * len(scan)), masker=None
    )
    iset = ImageSequence(
        isetdata, beam=beam, detector=detector, goniometer=goniometer, scan=scan
    )

    return Experiment(
        imageset=iset, beam=beam, detector=detector, goniometer=goniometer, scan=scan
    )
Exemple #3
0
def make_images(data, tag):
    pixel_size = 0.1  # mm/pixel
    detector = DetectorFactory.simple(
        'PAD', 100,
        (pixel_size * data.focus()[1] / 2, pixel_size * data.focus()[2] / 2),
        '+x', '-y', (pixel_size, pixel_size),
        (data.focus()[2], data.focus()[1]), (-1, 1e6 - 1), [], None)
    beam = BeamFactory.simple(1.0)
    sf = ScanFactory()
    scan = sf.make_scan(image_range=(1, 180),
                        exposure_times=0.1,
                        oscillation=(0, 1.0),
                        epochs=range(180),
                        deg=True)

    # write images in each of three directions
    for slice_id in [0, 1, 2]:
        for idx in xrange(data.focus()[slice_id]):
            if slice_id == 0:  # slow
                data_slice = data[idx:idx + 1, :, :]
                data_slice.reshape(flex.grid(data.focus()[1], data.focus()[2]))
                filename = "fft_frame_%s_mf_%04d.cbf" % (tag, idx)
            elif slice_id == 1:  # med
                data_slice = data[:, idx:idx + 1, :]
                data_slice.reshape(flex.grid(data.focus()[0], data.focus()[2]))
                filename = "fft_frame_%s_sf_%04d.cbf" % (tag, idx)
            elif slice_id == 2:  # fast
                data_slice = data[:, :, idx:idx + 1]
                data_slice.reshape(flex.grid(data.focus()[0], data.focus()[1]))
                filename = "fft_frame_%s_sm_%04d.cbf" % (tag, idx)
            print['slow', 'med', 'fast'][slice_id], idx
            FormatCBFMini.as_file(detector, beam, None, scan, data_slice,
                                  filename)
Exemple #4
0
    def create_models(self, cmdline_overrides=None):
        from dxtbx.model import ScanFactory
        from libtbx.phil import parse

        from dials.test.algorithms.refinement.setup_geometry import Extract

        if cmdline_overrides is None:
            cmdline_overrides = []
        overrides = """geometry.parameters.crystal.a.length.range = 10 50
geometry.parameters.crystal.b.length.range = 10 50
geometry.parameters.crystal.c.length.range = 10 50"""

        master_phil = parse(
            """
    include scope dials.test.algorithms.refinement.geometry_phil
    """,
            process_includes=True,
        )

        # Extract models
        models = Extract(master_phil,
                         overrides,
                         cmdline_args=cmdline_overrides)
        self.detector = models.detector
        self.goniometer = models.goniometer
        self.crystal = models.crystal
        self.beam = models.beam

        # Make a scan of 1-20 * 0.5 deg images
        sf = ScanFactory()
        self.scan = sf.make_scan((1, 20), 0.5, (0, 0.5), list(range(20)))

        # Generate an ExperimentList
        self.experiments = ExperimentList()
        self.experiments.append(
            Experiment(
                beam=self.beam,
                detector=self.detector,
                goniometer=self.goniometer,
                scan=self.scan,
                crystal=self.crystal,
                imageset=None,
            ))

        # Create a reflection predictor for the experiments
        self.ref_predictor = ScansExperimentsPredictor(self.experiments)

        # Create scan-varying parameterisations of these models, with 3 samples
        self.det_param = ScanVaryingDetectorParameterisationSinglePanel(
            self.detector, self.scan.get_array_range(), 3)
        self.s0_param = ScanVaryingBeamParameterisation(
            self.beam, self.scan.get_array_range(), 3, self.goniometer)
        self.xlo_param = ScanVaryingCrystalOrientationParameterisation(
            self.crystal, self.scan.get_array_range(), 3)
        self.xluc_param = ScanVaryingCrystalUnitCellParameterisation(
            self.crystal, self.scan.get_array_range(), 3)
        self.gon_param = ScanVaryingGoniometerParameterisation(
            self.goniometer, self.scan.get_array_range(), 3, self.beam)
Exemple #5
0
    def _scan(self):
        """Dummy scan for this image"""

        alpha = self._header_dictionary.get('alphaTilt', 0.0)
        dalpha = 1.0
        exposure = self._header_dictionary.get('integrationTime', 0.0)
        fname = os.path.split(self._image_file)[-1]
        # assume final number before the extension is the image number
        s = fname.split("_")[-1].split(".")[0]
        index = int(re.match('.*?([0-9]+)$', s).group(1))
        return ScanFactory.make_scan((index, index), exposure, (alpha, dalpha),
                                     {index: 0})
Exemple #6
0
def test_extract_experiment_data():
    """Test basic operation of the extract_experiment_data function. Does not
    test extraction of data from scan-varying models"""

    # Set up an Experiment with idealised geometry
    from dxtbx.model import BeamFactory
    from dxtbx.model import GoniometerFactory
    from dxtbx.model import Crystal
    from dxtbx.model import ScanFactory
    from dxtbx.model.experiment_list import Experiment

    beam = BeamFactory.make_beam(unit_s0=(0, 0, -1), wavelength=1.0)
    goniometer = GoniometerFactory.known_axis((1, 0, 0))
    a = (100, 0, 0)
    b = (0, 90, 0)
    c = (0, 0, 80)
    crystal = Crystal(a, b, c, space_group_symbol="P1")
    scan = ScanFactory.make_scan(
        image_range=(1, 91),
        exposure_times=0.1,
        oscillation=(0, 1.0),
        epochs=list(range(91)),
        deg=True,
    )

    exp = Experiment(beam=beam,
                     goniometer=goniometer,
                     scan=scan,
                     crystal=crystal)

    # Extract experiment data
    dat = extract_experiment_data(exp, scale=100)

    # Check results are as expected
    za = dat["zone_axes"]

    # At the first image the c axis is aligned antiparallel with the beam vector,
    # while the a and b axes are orthogonal. The zone axis calculation is scaled
    # by 100 (i.e. the max cell dimension, which is the default), therefore we
    # expect the zone axis [uvw] = [0 0 -100/80]
    assert za[0].elems == pytest.approx((0, 0, -100 / 80))

    # At the start of the 91st image the crystal has rotated by 90 degrees, so
    # now c is orthogonal to the beam while b is anti-parallel to it. The zone
    # axis is now expected to be [uvw] = [0 -100/90 0]
    assert za[-1].elems == pytest.approx((0, -100 / 90, 0))

    rsa = dat["real_space_axes"]
    a, b, c = rsa[0]
    assert a.elems == pytest.approx(crystal.get_real_space_vectors()[0])
    assert b.elems == pytest.approx(crystal.get_real_space_vectors()[1])
    assert c.elems == pytest.approx(crystal.get_real_space_vectors()[2])
Exemple #7
0
def create_experiments(image_start=1):

    # Create models
    from libtbx.phil import parse

    overrides = """geometry.parameters.crystal.a.length.range = 10 50
  geometry.parameters.crystal.b.length.range = 10 50
  geometry.parameters.crystal.c.length.range = 10 50"""
    master_phil = parse(
        """
      include scope dials.test.algorithms.refinement.geometry_phil
      """,
        process_includes=True,
    )
    from dials.test.algorithms.refinement.setup_geometry import Extract

    models = Extract(master_phil, overrides)

    detector = models.detector
    goniometer = models.goniometer
    crystal = models.crystal
    beam = models.beam

    # Build a mock scan for a 72 degree sequence
    from dxtbx.model import ScanFactory

    sf = ScanFactory()
    scan = sf.make_scan(
        image_range=(image_start, image_start + 720 - 1),
        exposure_times=0.1,
        oscillation=(0, 0.1),
        epochs=list(range(720)),
        deg=True,
    )

    # No matter what image_start is, scan should start at 0.0 and end at 72.0 deg
    assert scan.get_oscillation_range(deg=True) == (0.0, 72.0)

    # Create an ExperimentList
    experiments = ExperimentList()
    experiments.append(
        Experiment(
            beam=beam,
            detector=detector,
            goniometer=goniometer,
            scan=scan,
            crystal=crystal,
            imageset=None,
        )
    )

    return experiments
Exemple #8
0
def import_geometry(xds_inp=None, dials_json=None):
    assert (xds_inp, dials_json).count(None) == 1

    geom_kwds = set([
        "DIRECTION_OF_DETECTOR_X-AXIS",
        "DIRECTION_OF_DETECTOR_Y-AXIS",
        "DETECTOR_DISTANCE",
        "ORGX",
        "ORGY",
        "ROTATION_AXIS",  # "X-RAY_WAVELENGTH",
        "INCIDENT_BEAM_DIRECTION",
        "SEGMENT",
        "DIRECTION_OF_SEGMENT_X-AXIS",
        "DIRECTION_OF_SEGMENT_Y-AXIS",
        "SEGMENT_DISTANCE",
        "SEGMENT_ORGX",
        "SEGMENT_ORGY"
    ])

    # FIXME in case of multi-segment detector..

    if xds_inp:
        inp = get_xdsinp_keyword(xds_inp)
        inp = filter(lambda x: x[0] in geom_kwds, inp)
        return map(lambda x: "%s= %s" % x, inp)
    elif dials_json:
        import dxtbx.imageset
        from dxtbx.serialize.load import _decode_dict
        from dxtbx.model import BeamFactory
        from dxtbx.model import DetectorFactory
        from dxtbx.model import GoniometerFactory
        from dxtbx.model import ScanFactory
        from dxtbx.serialize.xds import to_xds
        j = json.loads(open(dials_json).read(), object_hook=_decode_dict)
        # dummy
        sweep = dxtbx.imageset.ImageSetFactory.from_template(
            "####", image_range=[1, 1], check_format=False)[0]
        sweep.set_detector(DetectorFactory.from_dict(j["detector"][0]))
        sweep.set_beam(BeamFactory.from_dict(j["beam"][0]))
        sweep.set_goniometer(GoniometerFactory.from_dict(j["goniometer"][0]))
        sweep.set_scan(
            ScanFactory.make_scan(image_range=[1, 1],
                                  exposure_times=[1],
                                  oscillation=[1, 2],
                                  epochs=[0]))  # dummy
        sio = cStringIO.StringIO()
        to_xds(sweep).XDS_INP(sio)
        inp = get_xdsinp_keyword(inp_str=sio.getvalue())
        inp = filter(lambda x: x[0] in geom_kwds, inp)
        return map(lambda x: "%s= %s" % x, inp)

    return []
def test_experimentlist_imagesequence_decode(mocker):
    # These models are shared between experiments
    beam = Beam(s0=(0, 0, -1))
    detector = Detector()
    gonio = Goniometer()

    # Construct the experiment list
    experiments = ExperimentList()
    for i in range(3):
        experiments.append(
            Experiment(
                beam=beam,
                detector=detector,
                scan=ScanFactory.make_scan(
                    image_range=(i + 1, i + 1),
                    exposure_times=[1],
                    oscillation=(0, 0),
                    epochs=[0],
                ),
                goniometer=gonio,
            ))

    # Convert experiment list to dict and manually insert a shared imageset
    d = experiments.to_dict()
    d["imageset"].append({
        "__id__": "ImageSequence",
        "template": "Puck3_10_1_####.cbf.gz"
    })
    for e in d["experiment"]:
        e["imageset"] = 0

    # Monkeypatch this function as we don't actually have an imageset
    make_sequence = mocker.patch.object(ExperimentListDict, "_make_sequence")
    # Ensure that if make_sequence is called more than once it returns a different
    # value each time
    make_sequence.side_effect = lambda *args, **kwargs: mocker.MagicMock()

    # Decode the dict to get a new experiment list
    experiments2 = ExperimentListDict(d).decode()

    # This function should only be called once per imageset
    make_sequence.assert_called_once()

    # Verify that this experiment is as we expect
    assert len(experiments2) == 3
    assert len(experiments2.imagesets()) == 1
    assert len(experiments2.goniometers()) == 1
    assert len(experiments2.detectors()) == 1
    assert len(experiments2.beams()) == 1
    assert len(experiments2.scans()) == 3
    for expt in experiments2:
        assert expt.imageset is experiments2.imagesets()[0]
Exemple #10
0
    def _scan(self):
        """Scan model for this image, filling out any unavailable items with
        dummy values"""

        alpha = self._header_dictionary.get("alphaTilt", 0.0)
        dalpha = self._header_dictionary.get("tiltPerImage", 1.0)
        exposure = self._header_dictionary.get("integrationTime", 0.0)
        oscillation = (alpha, dalpha)
        fname = os.path.split(self._image_file)[-1]
        # assume that the final number before the extension is the image number
        s = fname.split("_")[-1].split(".")[0]
        try:
            index = int(re.match(".*?([0-9]+)$", s).group(1))
        except AttributeError:
            index = 1
        return ScanFactory.make_scan((index, index), exposure, oscillation,
                                     {index: 0})
    def _scan(self):
        """Dummy scan for this image"""

        format = self._scan_factory.format("CBF")

        exposure_time = float(
            self._cif_header_dictionary["Exposure_period"].split()[0])

        fname = os.path.split(self._image_file)[-1]
        index = int(fname.split("_")[-1].split(".")[0])

        return ScanFactory.make_scan(
            image_range=(index, index),
            exposure_times=exposure_time,
            oscillation=(0, 1),
            epochs={index: 0},
        )
Exemple #12
0
def setup_models(args):
    """setup the experimental models"""

    # Setup experimental models
    master_phil = parse(
        """
      include scope dials.test.algorithms.refinement.geometry_phil
      """,
        process_includes=True,
    )

    models = setup_geometry.Extract(master_phil, cmdline_args=args)

    detector = models.detector
    goniometer = models.goniometer
    crystal = models.crystal
    beam = models.beam

    # Build a mock scan for a 180 degree sequence
    sf = ScanFactory()
    scan = sf.make_scan(
        image_range=(1, 180),
        exposure_times=0.1,
        oscillation=(0, 1.0),
        epochs=list(range(180)),
        deg=True,
    )
    sequence_range = scan.get_oscillation_range(deg=False)
    im_width = scan.get_oscillation(deg=False)[1]
    assert sequence_range == (0.0, math.pi)
    assert approx_equal(im_width, 1.0 * math.pi / 180.0)

    experiments = ExperimentList()
    experiments.append(
        Experiment(
            beam=beam,
            detector=detector,
            goniometer=goniometer,
            scan=scan,
            crystal=crystal,
            imageset=None,
        )
    )

    return experiments
Exemple #13
0
    def generate_reflections(self):
        # Build a mock scan for a 3 degree sequence
        sf = ScanFactory()
        self.scan = sf.make_scan(
            image_range=(1, 1),
            exposure_times=0.1,
            oscillation=(0, 3.0),
            epochs=list(range(1)),
            deg=True,
        )
        sequence_range = self.scan.get_oscillation_range(deg=False)

        # Create a scans ExperimentList, only for generating reflections
        experiments = ExperimentList()
        experiments.append(
            Experiment(
                beam=self.beam,
                detector=self.detector,
                goniometer=self.gonio,
                scan=self.scan,
                crystal=self.crystal,
                imageset=None,
            ))

        # Create a ScansRayPredictor
        ray_predictor = ScansRayPredictor(experiments, sequence_range)

        # Generate rays - only to work out which hkls are predicted
        resolution = 2.0
        index_generator = IndexGenerator(
            self.crystal.get_unit_cell(),
            space_group(space_group_symbols(1).hall()).type(),
            resolution,
        )
        indices = index_generator.to_array()
        rays = ray_predictor(indices)

        # Make a standard reflection_table and copy in the ray data
        self.reflections = flex.reflection_table.empty_standard(len(rays))
        self.reflections.update(rays)

        # Set dummy observed variances to allow statistical weights to be set
        self.reflections["xyzobs.mm.variance"] += (1e-3, 1e-3, 1e-6)
Exemple #14
0
def test(args=[]):
    # Python and cctbx imports
    from math import pi
    from scitbx import matrix
    from scitbx.array_family import flex
    from libtbx.phil import parse
    from libtbx.test_utils import approx_equal

    # Get module to build models using PHIL
    import dials.test.algorithms.refinement.setup_geometry as setup_geometry

    # We will set up a mock scan and a mock experiment list
    from dxtbx.model import ScanFactory
    from dxtbx.model.experiment_list import ExperimentList, Experiment

    # Model parameterisations
    from dials.algorithms.refinement.parameterisation.detector_parameters import \
        DetectorParameterisationSinglePanel
    from dials.algorithms.refinement.parameterisation.beam_parameters import \
        BeamParameterisation
    from dials.algorithms.refinement.parameterisation.crystal_parameters import \
        CrystalOrientationParameterisation, CrystalUnitCellParameterisation

    # Symmetry constrained parameterisation for the unit cell
    from cctbx.uctbx import unit_cell
    from rstbx.symmetry.constraints.parameter_reduction import \
        symmetrize_reduce_enlarge

    # Reflection prediction
    from dials.algorithms.spot_prediction import IndexGenerator
    from dials.algorithms.refinement.prediction import ScansRayPredictor, \
      ExperimentsPredictor
    from dials.algorithms.spot_prediction import ray_intersection
    from cctbx.sgtbx import space_group, space_group_symbols

    # Parameterisation of the prediction equation
    from dials.algorithms.refinement.parameterisation.prediction_parameters import \
        XYPhiPredictionParameterisation # implicit import

    # Imports for the target function
    from dials.algorithms.refinement.target import \
        LeastSquaresPositionalResidualWithRmsdCutoff # implicit import

    #############################
    # Setup experimental models #
    #############################

    master_phil = parse("""
      include scope dials.test.algorithms.refinement.geometry_phil
      include scope dials.test.algorithms.refinement.minimiser_phil
      """,
                        process_includes=True)

    models = setup_geometry.Extract(
        master_phil,
        cmdline_args=args,
        local_overrides="geometry.parameters.random_seed = 1")

    crystal1 = models.crystal

    models = setup_geometry.Extract(
        master_phil,
        cmdline_args=args,
        local_overrides="geometry.parameters.random_seed = 2")

    mydetector = models.detector
    mygonio = models.goniometer
    crystal2 = models.crystal
    mybeam = models.beam

    # Build a mock scan for a 180 degree sweep
    sf = ScanFactory()
    myscan = sf.make_scan(image_range=(1, 1800),
                          exposure_times=0.1,
                          oscillation=(0, 0.1),
                          epochs=range(1800),
                          deg=True)
    sweep_range = myscan.get_oscillation_range(deg=False)
    im_width = myscan.get_oscillation(deg=False)[1]
    assert sweep_range == (0., pi)
    assert approx_equal(im_width, 0.1 * pi / 180.)

    # Build an experiment list
    experiments = ExperimentList()
    experiments.append(
        Experiment(beam=mybeam,
                   detector=mydetector,
                   goniometer=mygonio,
                   scan=myscan,
                   crystal=crystal1,
                   imageset=None))
    experiments.append(
        Experiment(beam=mybeam,
                   detector=mydetector,
                   goniometer=mygonio,
                   scan=myscan,
                   crystal=crystal2,
                   imageset=None))

    assert len(experiments.detectors()) == 1

    ##########################################################
    # Parameterise the models (only for perturbing geometry) #
    ##########################################################

    det_param = DetectorParameterisationSinglePanel(mydetector)
    s0_param = BeamParameterisation(mybeam, mygonio)
    xl1o_param = CrystalOrientationParameterisation(crystal1)
    xl1uc_param = CrystalUnitCellParameterisation(crystal1)
    xl2o_param = CrystalOrientationParameterisation(crystal2)
    xl2uc_param = CrystalUnitCellParameterisation(crystal2)

    # Fix beam to the X-Z plane (imgCIF geometry), fix wavelength
    s0_param.set_fixed([True, False, True])

    # Fix crystal parameters
    #xluc_param.set_fixed([True, True, True, True, True, True])

    ########################################################################
    # Link model parameterisations together into a parameterisation of the #
    # prediction equation                                                  #
    ########################################################################

    #pred_param = XYPhiPredictionParameterisation(experiments,
    #  [det_param], [s0_param], [xlo_param], [xluc_param])

    ################################
    # Apply known parameter shifts #
    ################################

    # shift detector by 1.0 mm each translation and 2 mrad each rotation
    det_p_vals = det_param.get_param_vals()
    p_vals = [a + b for a, b in zip(det_p_vals, [1.0, 1.0, 1.0, 2., 2., 2.])]
    det_param.set_param_vals(p_vals)

    # shift beam by 2 mrad in free axis
    s0_p_vals = s0_param.get_param_vals()
    p_vals = list(s0_p_vals)

    p_vals[0] += 2.
    s0_param.set_param_vals(p_vals)

    # rotate crystal a bit (=2 mrad each rotation)
    xlo_p_vals = []
    for xlo in (xl1o_param, xl2o_param):
        p_vals = xlo.get_param_vals()
        xlo_p_vals.append(p_vals)
        new_p_vals = [a + b for a, b in zip(p_vals, [2., 2., 2.])]
        xlo.set_param_vals(new_p_vals)

    # change unit cell a bit (=0.1 Angstrom length upsets, 0.1 degree of
    # gamma angle)
    xluc_p_vals = []
    for xluc, xl in ((xl1uc_param, crystal1), ((xl2uc_param, crystal2))):
        p_vals = xluc.get_param_vals()
        xluc_p_vals.append(p_vals)
        cell_params = xl.get_unit_cell().parameters()
        cell_params = [
            a + b for a, b in zip(cell_params, [0.1, 0.1, 0.1, 0.0, 0.0, 0.1])
        ]
        new_uc = unit_cell(cell_params)
        newB = matrix.sqr(new_uc.fractionalization_matrix()).transpose()
        S = symmetrize_reduce_enlarge(xl.get_space_group())
        S.set_orientation(orientation=newB)
        X = tuple([e * 1.e5 for e in S.forward_independent_parameters()])
        xluc.set_param_vals(X)

    #############################
    # Generate some reflections #
    #############################

    #print "Reflections will be generated with the following geometry:"
    #print mybeam
    #print mydetector
    #print crystal1
    #print crystal2

    # All indices in a 2.0 Angstrom sphere for crystal1
    resolution = 2.0
    index_generator = IndexGenerator(
        crystal1.get_unit_cell(),
        space_group(space_group_symbols(1).hall()).type(), resolution)
    indices1 = index_generator.to_array()

    # All indices in a 2.0 Angstrom sphere for crystal2
    resolution = 2.0
    index_generator = IndexGenerator(
        crystal2.get_unit_cell(),
        space_group(space_group_symbols(1).hall()).type(), resolution)
    indices2 = index_generator.to_array()

    # Predict rays within the sweep range. Set experiment IDs
    ray_predictor = ScansRayPredictor(experiments, sweep_range)
    obs_refs1 = ray_predictor(indices1, experiment_id=0)
    obs_refs1['id'] = flex.int(len(obs_refs1), 0)
    obs_refs2 = ray_predictor(indices1, experiment_id=1)
    obs_refs2['id'] = flex.int(len(obs_refs2), 1)

    # Take only those rays that intersect the detector
    intersects = ray_intersection(mydetector, obs_refs1)
    obs_refs1 = obs_refs1.select(intersects)
    intersects = ray_intersection(mydetector, obs_refs2)
    obs_refs2 = obs_refs2.select(intersects)

    # Make a reflection predictor and re-predict for all these reflections. The
    # result is the same, but we gain also the flags and xyzcal.px columns
    ref_predictor = ExperimentsPredictor(experiments)
    obs_refs1 = ref_predictor(obs_refs1)
    obs_refs2 = ref_predictor(obs_refs2)

    # Set 'observed' centroids from the predicted ones
    obs_refs1['xyzobs.mm.value'] = obs_refs1['xyzcal.mm']
    obs_refs2['xyzobs.mm.value'] = obs_refs2['xyzcal.mm']

    # Invent some variances for the centroid positions of the simulated data
    im_width = 0.1 * pi / 180.
    px_size = mydetector[0].get_pixel_size()
    var_x = flex.double(len(obs_refs1), (px_size[0] / 2.)**2)
    var_y = flex.double(len(obs_refs1), (px_size[1] / 2.)**2)
    var_phi = flex.double(len(obs_refs1), (im_width / 2.)**2)
    obs_refs1['xyzobs.mm.variance'] = flex.vec3_double(var_x, var_y, var_phi)
    var_x = flex.double(len(obs_refs2), (px_size[0] / 2.)**2)
    var_y = flex.double(len(obs_refs2), (px_size[1] / 2.)**2)
    var_phi = flex.double(len(obs_refs2), (im_width / 2.)**2)
    obs_refs2['xyzobs.mm.variance'] = flex.vec3_double(var_x, var_y, var_phi)

    #print "Total number of reflections excited for crystal1", len(obs_refs1)
    #print "Total number of reflections excited for crystal2", len(obs_refs2)

    # concatenate reflection lists
    obs_refs1.extend(obs_refs2)
    obs_refs = obs_refs1

    ###############################
    # Undo known parameter shifts #
    ###############################

    s0_param.set_param_vals(s0_p_vals)
    det_param.set_param_vals(det_p_vals)
    xl1o_param.set_param_vals(xlo_p_vals[0])
    xl2o_param.set_param_vals(xlo_p_vals[1])
    xl1uc_param.set_param_vals(xluc_p_vals[0])
    xl2uc_param.set_param_vals(xluc_p_vals[1])

    #print "Initial values of parameters are"
    #msg = "Parameters: " + "%.5f " * len(pred_param)
    #print msg % tuple(pred_param.get_param_vals())
    #print

    # make a refiner
    from dials.algorithms.refinement.refiner import phil_scope
    params = phil_scope.fetch(source=parse('')).extract()

    # in case we want a plot
    params.refinement.refinery.journal.track_parameter_correlation = True

    # scan static first
    from dials.algorithms.refinement.refiner import RefinerFactory
    refiner = RefinerFactory.from_parameters_data_experiments(params,
                                                              obs_refs,
                                                              experiments,
                                                              verbosity=0)
    history = refiner.run()

    # scan varying
    params.refinement.parameterisation.scan_varying = True
    refiner = RefinerFactory.from_parameters_data_experiments(params,
                                                              obs_refs,
                                                              experiments,
                                                              verbosity=0)
    history = refiner.run()
def test1():

    dials_regression = libtbx.env.find_in_repositories(
        relative_path="dials_regression", test=os.path.isdir)

    # use a datablock that contains a CS-PAD detector description
    data_dir = os.path.join(dials_regression, "refinement_test_data",
                            "hierarchy_test")
    datablock_path = os.path.join(data_dir, "datablock.json")
    assert os.path.exists(datablock_path)

    # load models
    from dxtbx.datablock import DataBlockFactory
    datablock = DataBlockFactory.from_serialized_format(datablock_path,
                                                        check_format=False)
    im_set = datablock[0].extract_imagesets()[0]
    from copy import deepcopy
    detector = deepcopy(im_set.get_detector())
    beam = im_set.get_beam()

    # we'll invent a crystal, goniometer and scan for this test
    from dxtbx.model import Crystal
    crystal = Crystal((40., 0., 0.), (0., 40., 0.), (0., 0., 40.),
                      space_group_symbol="P1")

    from dxtbx.model import GoniometerFactory
    goniometer = GoniometerFactory.known_axis((1., 0., 0.))

    # Build a mock scan for a 180 degree sweep
    from dxtbx.model import ScanFactory
    sf = ScanFactory()
    scan = sf.make_scan(image_range=(1, 1800),
                        exposure_times=0.1,
                        oscillation=(0, 0.1),
                        epochs=range(1800),
                        deg=True)
    sweep_range = scan.get_oscillation_range(deg=False)
    im_width = scan.get_oscillation(deg=False)[1]
    assert sweep_range == (0., pi)
    assert approx_equal(im_width, 0.1 * pi / 180.)

    from dxtbx.model.experiment_list import ExperimentList, Experiment

    # Build an experiment list
    experiments = ExperimentList()
    experiments.append(
        Experiment(beam=beam,
                   detector=detector,
                   goniometer=goniometer,
                   scan=scan,
                   crystal=crystal,
                   imageset=None))

    # simulate some reflections
    refs, ref_predictor = generate_reflections(experiments)

    # move the detector quadrants apart by 2mm both horizontally and vertically
    from dials.algorithms.refinement.parameterisation \
      import DetectorParameterisationHierarchical
    det_param = DetectorParameterisationHierarchical(detector, level=1)
    det_p_vals = det_param.get_param_vals()
    p_vals = list(det_p_vals)
    p_vals[1] += 2
    p_vals[2] -= 2
    p_vals[7] += 2
    p_vals[8] += 2
    p_vals[13] -= 2
    p_vals[14] += 2
    p_vals[19] -= 2
    p_vals[20] -= 2
    det_param.set_param_vals(p_vals)

    # reparameterise the detector at the new perturbed geometry
    det_param = DetectorParameterisationHierarchical(detector, level=1)

    # parameterise other models
    from dials.algorithms.refinement.parameterisation.beam_parameters import \
        BeamParameterisation
    from dials.algorithms.refinement.parameterisation.crystal_parameters import \
        CrystalOrientationParameterisation, CrystalUnitCellParameterisation
    beam_param = BeamParameterisation(beam, goniometer)
    xlo_param = CrystalOrientationParameterisation(crystal)
    xluc_param = CrystalUnitCellParameterisation(crystal)

    # fix beam
    beam_param.set_fixed([True] * 3)

    # fix crystal
    xluc_param.set_fixed([True] * 6)
    xlo_param.set_fixed([True] * 3)

    # parameterisation of the prediction equation
    from dials.algorithms.refinement.parameterisation.prediction_parameters import \
        XYPhiPredictionParameterisation
    from dials.algorithms.refinement.parameterisation.parameter_report import \
        ParameterReporter
    pred_param = XYPhiPredictionParameterisation(experiments, [det_param],
                                                 [beam_param], [xlo_param],
                                                 [xluc_param])
    param_reporter = ParameterReporter([det_param], [beam_param], [xlo_param],
                                       [xluc_param])

    # reflection manager and target function
    from dials.algorithms.refinement.target import \
      LeastSquaresPositionalResidualWithRmsdCutoff
    from dials.algorithms.refinement.reflection_manager import ReflectionManager
    refman = ReflectionManager(refs, experiments, nref_per_degree=20)

    # set a very tight rmsd target of 1/10000 of a pixel
    target = LeastSquaresPositionalResidualWithRmsdCutoff(
        experiments,
        ref_predictor,
        refman,
        pred_param,
        restraints_parameterisation=None,
        frac_binsize_cutoff=0.0001)

    # minimisation engine
    from dials.algorithms.refinement.engine \
      import LevenbergMarquardtIterations as Refinery
    refinery = Refinery(target=target,
                        prediction_parameterisation=pred_param,
                        log=None,
                        verbosity=0,
                        max_iterations=20)

    # Refiner
    from dials.algorithms.refinement.refiner import Refiner
    refiner = Refiner(reflections=refs,
                      experiments=experiments,
                      pred_param=pred_param,
                      param_reporter=param_reporter,
                      refman=refman,
                      target=target,
                      refinery=refinery,
                      verbosity=0)

    history = refiner.run()
    assert history.reason_for_termination == "RMSD target achieved"

    #compare detector with original detector
    orig_det = im_set.get_detector()
    refined_det = refiner.get_experiments()[0].detector

    from scitbx import matrix
    import math
    for op, rp in zip(orig_det, refined_det):
        # compare the origin vectors by...
        o1 = matrix.col(op.get_origin())
        o2 = matrix.col(rp.get_origin())
        # ...their relative lengths
        assert approx_equal(math.fabs(o1.length() - o2.length()) / o1.length(),
                            0,
                            eps=1e-5)
        # ...the angle between them
        assert approx_equal(o1.accute_angle(o2), 0, eps=1e-5)

    print "OK"
    return
Exemple #16
0
def test(args=[]):
    #############################
    # Setup experimental models #
    #############################
    master_phil = parse(
        """
      include scope dials.test.algorithms.refinement.geometry_phil
      include scope dials.test.algorithms.refinement.minimiser_phil
      """,
        process_includes=True,
    )

    models = setup_geometry.Extract(master_phil, cmdline_args=args)

    single_panel_detector = models.detector
    mygonio = models.goniometer
    mycrystal = models.crystal
    mybeam = models.beam

    # Make a 3x3 multi panel detector filling the same space as the existing
    # single panel detector. Each panel of the multi-panel detector has pixels with
    # 1/3 the length dimensions of the single panel.

    multi_panel_detector = Detector()
    for x in range(3):
        for y in range(3):
            new_panel = make_panel_in_array((x, y), single_panel_detector[0])
            multi_panel_detector.add_panel(new_panel)

    # Build a mock scan for a 180 degree sweep
    sf = ScanFactory()
    myscan = sf.make_scan(
        image_range=(1, 1800),
        exposure_times=0.1,
        oscillation=(0, 0.1),
        epochs=list(range(1800)),
        deg=True,
    )
    sweep_range = myscan.get_oscillation_range(deg=False)
    im_width = myscan.get_oscillation(deg=False)[1]
    assert sweep_range == (0.0, pi)
    assert approx_equal(im_width, 0.1 * pi / 180.0)

    # Build ExperimentLists
    experiments_single_panel = ExperimentList()
    experiments_multi_panel = ExperimentList()
    experiments_single_panel.append(
        Experiment(
            beam=mybeam,
            detector=single_panel_detector,
            goniometer=mygonio,
            scan=myscan,
            crystal=mycrystal,
            imageset=None,
        ))
    experiments_multi_panel.append(
        Experiment(
            beam=mybeam,
            detector=multi_panel_detector,
            goniometer=mygonio,
            scan=myscan,
            crystal=mycrystal,
            imageset=None,
        ))

    ###########################
    # Parameterise the models #
    ###########################

    det_param = DetectorParameterisationSinglePanel(single_panel_detector)
    s0_param = BeamParameterisation(mybeam, mygonio)
    xlo_param = CrystalOrientationParameterisation(mycrystal)
    xluc_param = CrystalUnitCellParameterisation(mycrystal)

    multi_det_param = DetectorParameterisationMultiPanel(
        multi_panel_detector, mybeam)

    # Fix beam to the X-Z plane (imgCIF geometry), fix wavelength
    s0_param.set_fixed([True, False, True])

    # Fix crystal parameters
    # xluc_param.set_fixed([True, True, True, True, True, True])

    ########################################################################
    # Link model parameterisations together into a parameterisation of the #
    # prediction equation                                                  #
    ########################################################################

    pred_param = XYPhiPredictionParameterisation(experiments_single_panel,
                                                 [det_param], [s0_param],
                                                 [xlo_param], [xluc_param])

    pred_param2 = XYPhiPredictionParameterisation(
        experiments_multi_panel,
        [multi_det_param],
        [s0_param],
        [xlo_param],
        [xluc_param],
    )

    ################################
    # Apply known parameter shifts #
    ################################

    # shift detectors by 1.0 mm each translation and 2 mrad each rotation
    det_p_vals = det_param.get_param_vals()
    p_vals = [
        a + b for a, b in zip(det_p_vals, [1.0, 1.0, 1.0, 2.0, 2.0, 2.0])
    ]
    det_param.set_param_vals(p_vals)

    multi_det_p_vals = multi_det_param.get_param_vals()
    p_vals = [
        a + b for a, b in zip(multi_det_p_vals, [1.0, 1.0, 1.0, 2.0, 2.0, 2.0])
    ]
    multi_det_param.set_param_vals(p_vals)

    # shift beam by 2 mrad in free axis
    s0_p_vals = s0_param.get_param_vals()
    p_vals = list(s0_p_vals)

    p_vals[0] += 2.0
    s0_param.set_param_vals(p_vals)

    # rotate crystal a bit (=2 mrad each rotation)
    xlo_p_vals = xlo_param.get_param_vals()
    p_vals = [a + b for a, b in zip(xlo_p_vals, [2.0, 2.0, 2.0])]
    xlo_param.set_param_vals(p_vals)

    # change unit cell a bit (=0.1 Angstrom length upsets, 0.1 degree of
    # gamma angle)
    xluc_p_vals = xluc_param.get_param_vals()
    cell_params = mycrystal.get_unit_cell().parameters()
    cell_params = [
        a + b for a, b in zip(cell_params, [0.1, 0.1, 0.1, 0.0, 0.0, 0.1])
    ]
    new_uc = unit_cell(cell_params)
    newB = matrix.sqr(new_uc.fractionalization_matrix()).transpose()
    S = symmetrize_reduce_enlarge(mycrystal.get_space_group())
    S.set_orientation(orientation=newB)
    X = tuple([e * 1.0e5 for e in S.forward_independent_parameters()])
    xluc_param.set_param_vals(X)

    #############################
    # Generate some reflections #
    #############################

    # All indices in a 2.0 Angstrom sphere
    resolution = 2.0
    index_generator = IndexGenerator(
        mycrystal.get_unit_cell(),
        space_group(space_group_symbols(1).hall()).type(),
        resolution,
    )
    indices = index_generator.to_array()

    # for the reflection predictor, it doesn't matter which experiment list is
    # passed, as the detector is not used
    ref_predictor = ScansRayPredictor(experiments_single_panel, sweep_range)

    # get two sets of identical reflections
    obs_refs = ref_predictor(indices)
    obs_refs2 = ref_predictor(indices)
    for r1, r2 in zip(obs_refs, obs_refs2):
        assert r1["s1"] == r2["s1"]

    # get the panel intersections
    sel = ray_intersection(single_panel_detector, obs_refs)
    obs_refs = obs_refs.select(sel)
    sel = ray_intersection(multi_panel_detector, obs_refs2)
    obs_refs2 = obs_refs2.select(sel)
    assert len(obs_refs) == len(obs_refs2)

    # Set 'observed' centroids from the predicted ones
    obs_refs["xyzobs.mm.value"] = obs_refs["xyzcal.mm"]
    obs_refs2["xyzobs.mm.value"] = obs_refs2["xyzcal.mm"]

    # Invent some variances for the centroid positions of the simulated data
    im_width = 0.1 * pi / 180.0
    px_size = single_panel_detector[0].get_pixel_size()
    var_x = flex.double(len(obs_refs), (px_size[0] / 2.0)**2)
    var_y = flex.double(len(obs_refs), (px_size[1] / 2.0)**2)
    var_phi = flex.double(len(obs_refs), (im_width / 2.0)**2)

    # set the variances and frame numbers
    obs_refs["xyzobs.mm.variance"] = flex.vec3_double(var_x, var_y, var_phi)
    obs_refs2["xyzobs.mm.variance"] = flex.vec3_double(var_x, var_y, var_phi)

    # Add in flags and ID columns by copying into standard reflection tables
    tmp = flex.reflection_table.empty_standard(len(obs_refs))
    tmp.update(obs_refs)
    obs_refs = tmp
    tmp = flex.reflection_table.empty_standard(len(obs_refs2))
    tmp.update(obs_refs2)
    obs_refs2 = tmp

    ###############################
    # Undo known parameter shifts #
    ###############################

    s0_param.set_param_vals(s0_p_vals)
    det_param.set_param_vals(det_p_vals)
    multi_det_param.set_param_vals(det_p_vals)
    xlo_param.set_param_vals(xlo_p_vals)
    xluc_param.set_param_vals(xluc_p_vals)

    #####################################
    # Select reflections for refinement #
    #####################################

    refman = ReflectionManager(obs_refs, experiments_single_panel)
    refman2 = ReflectionManager(obs_refs, experiments_multi_panel)

    ###############################
    # Set up the target functions #
    ###############################

    mytarget = LeastSquaresPositionalResidualWithRmsdCutoff(
        experiments_single_panel,
        ScansExperimentsPredictor(experiments_single_panel),
        refman,
        pred_param,
        restraints_parameterisation=None,
    )
    mytarget2 = LeastSquaresPositionalResidualWithRmsdCutoff(
        experiments_multi_panel,
        ScansExperimentsPredictor(experiments_multi_panel),
        refman2,
        pred_param2,
        restraints_parameterisation=None,
    )

    #################################
    # Set up the refinement engines #
    #################################

    refiner = setup_minimiser.Extract(master_phil,
                                      mytarget,
                                      pred_param,
                                      cmdline_args=args).refiner
    refiner2 = setup_minimiser.Extract(master_phil,
                                       mytarget2,
                                       pred_param2,
                                       cmdline_args=args).refiner

    refiner.run()

    # reset parameters and run refinement with the multi panel detector
    s0_param.set_param_vals(s0_p_vals)
    multi_det_param.set_param_vals(det_p_vals)
    xlo_param.set_param_vals(xlo_p_vals)
    xluc_param.set_param_vals(xluc_p_vals)

    refiner2.run()

    # same number of steps
    assert refiner.get_num_steps() == refiner2.get_num_steps()

    # same rmsds
    for rmsd, rmsd2 in zip(refiner.history["rmsd"], refiner2.history["rmsd"]):
        assert approx_equal(rmsd, rmsd2)

    # same parameter values each step
    for params, params2 in zip(refiner.history["parameter_vector"],
                               refiner.history["parameter_vector"]):
        assert approx_equal(params, params2)
Exemple #17
0
def test(args=[]):

    #############################
    # Setup experimental models #
    #############################

    master_phil = parse(
        """
        include scope dials.tests.algorithms.refinement.geometry_phil
        include scope dials.tests.algorithms.refinement.minimiser_phil
        """,
        process_includes=True,
    )

    models = setup_geometry.Extract(
        master_phil,
        cmdline_args=args,
        local_overrides="geometry.parameters.random_seed = 1",
    )

    crystal1 = models.crystal

    models = setup_geometry.Extract(
        master_phil,
        cmdline_args=args,
        local_overrides="geometry.parameters.random_seed = 2",
    )

    mydetector = models.detector
    mygonio = models.goniometer
    crystal2 = models.crystal
    mybeam = models.beam

    # Build a mock scan for an 18 degree sequence
    sf = ScanFactory()
    myscan = sf.make_scan(
        image_range=(1, 180),
        exposure_times=0.1,
        oscillation=(0, 0.1),
        epochs=list(range(180)),
        deg=True,
    )
    sequence_range = myscan.get_oscillation_range(deg=False)
    im_width = myscan.get_oscillation(deg=False)[1]
    assert sequence_range == (0.0, pi / 10)
    assert approx_equal(im_width, 0.1 * pi / 180.0)

    # Build an experiment list
    experiments = ExperimentList()
    experiments.append(
        Experiment(
            beam=mybeam,
            detector=mydetector,
            goniometer=mygonio,
            scan=myscan,
            crystal=crystal1,
            imageset=None,
        ))
    experiments.append(
        Experiment(
            beam=mybeam,
            detector=mydetector,
            goniometer=mygonio,
            scan=myscan,
            crystal=crystal2,
            imageset=None,
        ))

    assert len(experiments.detectors()) == 1

    ##########################################################
    # Parameterise the models (only for perturbing geometry) #
    ##########################################################

    det_param = DetectorParameterisationSinglePanel(mydetector)
    s0_param = BeamParameterisation(mybeam, mygonio)
    xl1o_param = CrystalOrientationParameterisation(crystal1)
    xl1uc_param = CrystalUnitCellParameterisation(crystal1)
    xl2o_param = CrystalOrientationParameterisation(crystal2)
    xl2uc_param = CrystalUnitCellParameterisation(crystal2)

    # Fix beam to the X-Z plane (imgCIF geometry), fix wavelength
    s0_param.set_fixed([True, False, True])

    ################################
    # Apply known parameter shifts #
    ################################

    # shift detector by 1.0 mm each translation and 2 mrad each rotation
    det_p_vals = det_param.get_param_vals()
    p_vals = [
        a + b for a, b in zip(det_p_vals, [1.0, 1.0, 1.0, 2.0, 2.0, 2.0])
    ]
    det_param.set_param_vals(p_vals)

    # shift beam by 2 mrad in free axis
    s0_p_vals = s0_param.get_param_vals()
    p_vals = list(s0_p_vals)

    p_vals[0] += 2.0
    s0_param.set_param_vals(p_vals)

    # rotate crystal a bit (=2 mrad each rotation)
    xlo_p_vals = []
    for xlo in (xl1o_param, xl2o_param):
        p_vals = xlo.get_param_vals()
        xlo_p_vals.append(p_vals)
        new_p_vals = [a + b for a, b in zip(p_vals, [2.0, 2.0, 2.0])]
        xlo.set_param_vals(new_p_vals)

    # change unit cell a bit (=0.1 Angstrom length upsets, 0.1 degree of
    # gamma angle)
    xluc_p_vals = []
    for xluc, xl in ((xl1uc_param, crystal1), ((xl2uc_param, crystal2))):
        p_vals = xluc.get_param_vals()
        xluc_p_vals.append(p_vals)
        cell_params = xl.get_unit_cell().parameters()
        cell_params = [
            a + b for a, b in zip(cell_params, [0.1, 0.1, 0.1, 0.0, 0.0, 0.1])
        ]
        new_uc = unit_cell(cell_params)
        newB = matrix.sqr(new_uc.fractionalization_matrix()).transpose()
        S = symmetrize_reduce_enlarge(xl.get_space_group())
        S.set_orientation(orientation=newB)
        X = tuple([e * 1.0e5 for e in S.forward_independent_parameters()])
        xluc.set_param_vals(X)

    #############################
    # Generate some reflections #
    #############################

    # All indices in a 2.5 Angstrom sphere for crystal1
    resolution = 2.5
    index_generator = IndexGenerator(
        crystal1.get_unit_cell(),
        space_group(space_group_symbols(1).hall()).type(),
        resolution,
    )
    indices1 = index_generator.to_array()

    # All indices in a 2.5 Angstrom sphere for crystal2
    resolution = 2.5
    index_generator = IndexGenerator(
        crystal2.get_unit_cell(),
        space_group(space_group_symbols(1).hall()).type(),
        resolution,
    )
    indices2 = index_generator.to_array()

    # Predict rays within the sequence range. Set experiment IDs
    ray_predictor = ScansRayPredictor(experiments, sequence_range)
    obs_refs1 = ray_predictor(indices1, experiment_id=0)
    obs_refs1["id"] = flex.int(len(obs_refs1), 0)
    obs_refs2 = ray_predictor(indices2, experiment_id=1)
    obs_refs2["id"] = flex.int(len(obs_refs2), 1)

    # Take only those rays that intersect the detector
    intersects = ray_intersection(mydetector, obs_refs1)
    obs_refs1 = obs_refs1.select(intersects)
    intersects = ray_intersection(mydetector, obs_refs2)
    obs_refs2 = obs_refs2.select(intersects)

    # Make a reflection predictor and re-predict for all these reflections. The
    # result is the same, but we gain also the flags and xyzcal.px columns
    ref_predictor = ScansExperimentsPredictor(experiments)
    obs_refs1 = ref_predictor(obs_refs1)
    obs_refs2 = ref_predictor(obs_refs2)

    # Set 'observed' centroids from the predicted ones
    obs_refs1["xyzobs.mm.value"] = obs_refs1["xyzcal.mm"]
    obs_refs2["xyzobs.mm.value"] = obs_refs2["xyzcal.mm"]

    # Invent some variances for the centroid positions of the simulated data
    im_width = 0.1 * pi / 18.0
    px_size = mydetector[0].get_pixel_size()
    var_x = flex.double(len(obs_refs1), (px_size[0] / 2.0)**2)
    var_y = flex.double(len(obs_refs1), (px_size[1] / 2.0)**2)
    var_phi = flex.double(len(obs_refs1), (im_width / 2.0)**2)
    obs_refs1["xyzobs.mm.variance"] = flex.vec3_double(var_x, var_y, var_phi)
    var_x = flex.double(len(obs_refs2), (px_size[0] / 2.0)**2)
    var_y = flex.double(len(obs_refs2), (px_size[1] / 2.0)**2)
    var_phi = flex.double(len(obs_refs2), (im_width / 2.0)**2)
    obs_refs2["xyzobs.mm.variance"] = flex.vec3_double(var_x, var_y, var_phi)

    # concatenate reflection lists
    obs_refs1.extend(obs_refs2)
    obs_refs = obs_refs1

    ###############################
    # Undo known parameter shifts #
    ###############################

    s0_param.set_param_vals(s0_p_vals)
    det_param.set_param_vals(det_p_vals)
    xl1o_param.set_param_vals(xlo_p_vals[0])
    xl2o_param.set_param_vals(xlo_p_vals[1])
    xl1uc_param.set_param_vals(xluc_p_vals[0])
    xl2uc_param.set_param_vals(xluc_p_vals[1])

    # scan static first
    params = phil_scope.fetch(source=parse("")).extract()
    refiner = RefinerFactory.from_parameters_data_experiments(
        params, obs_refs, experiments)
    refiner.run()

    # scan varying
    params.refinement.parameterisation.scan_varying = True
    refiner = RefinerFactory.from_parameters_data_experiments(
        params, obs_refs, experiments)
    refiner.run()

    # Ensure all models have scan-varying state set
    # (https://github.com/dials/dials/issues/798)
    refined_experiments = refiner.get_experiments()
    sp = [xl.get_num_scan_points() for xl in refined_experiments.crystals()]

    assert sp.count(181) == 2
Exemple #18
0
def test_refinement(dials_regression):
    """Test a refinement run"""

    # Get a beam and detector from a experiments. This one has a CS-PAD, but that
    # is irrelevant
    data_dir = os.path.join(dials_regression, "refinement_test_data",
                            "hierarchy_test")
    experiments_path = os.path.join(data_dir, "datablock.json")
    assert os.path.exists(experiments_path)

    # load models
    from dxtbx.model.experiment_list import ExperimentListFactory

    experiments = ExperimentListFactory.from_serialized_format(
        experiments_path, check_format=False)
    im_set = experiments.imagesets()[0]
    detector = deepcopy(im_set.get_detector())
    beam = im_set.get_beam()

    # Invent a crystal, goniometer and scan for this test
    from dxtbx.model import Crystal

    crystal = Crystal((40.0, 0.0, 0.0), (0.0, 40.0, 0.0), (0.0, 0.0, 40.0),
                      space_group_symbol="P1")
    orig_xl = deepcopy(crystal)

    from dxtbx.model import GoniometerFactory

    goniometer = GoniometerFactory.known_axis((1.0, 0.0, 0.0))

    # Build a mock scan for a 180 degree sequence
    from dxtbx.model import ScanFactory

    sf = ScanFactory()
    scan = sf.make_scan(
        image_range=(1, 1800),
        exposure_times=0.1,
        oscillation=(0, 0.1),
        epochs=list(range(1800)),
        deg=True,
    )
    sequence_range = scan.get_oscillation_range(deg=False)
    im_width = scan.get_oscillation(deg=False)[1]
    assert sequence_range == (0.0, pi)
    assert approx_equal(im_width, 0.1 * pi / 180.0)

    # Build an experiment list
    experiments = ExperimentList()
    experiments.append(
        Experiment(
            beam=beam,
            detector=detector,
            goniometer=goniometer,
            scan=scan,
            crystal=crystal,
            imageset=None,
        ))

    # simulate some reflections
    refs, _ = generate_reflections(experiments)

    # change unit cell a bit (=0.1 Angstrom length upsets, 0.1 degree of
    # alpha and beta angles)
    from dials.algorithms.refinement.parameterisation.crystal_parameters import (
        CrystalUnitCellParameterisation, )

    xluc_param = CrystalUnitCellParameterisation(crystal)
    cell_params = crystal.get_unit_cell().parameters()
    cell_params = [
        a + b for a, b in zip(cell_params, [0.1, -0.1, 0.1, 0.1, -0.1, 0.0])
    ]
    from cctbx.uctbx import unit_cell
    from rstbx.symmetry.constraints.parameter_reduction import symmetrize_reduce_enlarge
    from scitbx import matrix

    new_uc = unit_cell(cell_params)
    newB = matrix.sqr(new_uc.fractionalization_matrix()).transpose()
    S = symmetrize_reduce_enlarge(crystal.get_space_group())
    S.set_orientation(orientation=newB)
    X = tuple([e * 1.0e5 for e in S.forward_independent_parameters()])
    xluc_param.set_param_vals(X)

    # reparameterise the crystal at the perturbed geometry
    xluc_param = CrystalUnitCellParameterisation(crystal)

    # Dummy parameterisations for other models
    beam_param = None
    xlo_param = None
    det_param = None

    # parameterisation of the prediction equation
    from dials.algorithms.refinement.parameterisation.parameter_report import (
        ParameterReporter, )

    pred_param = TwoThetaPredictionParameterisation(experiments, det_param,
                                                    beam_param, xlo_param,
                                                    [xluc_param])
    param_reporter = ParameterReporter(det_param, beam_param, xlo_param,
                                       [xluc_param])

    # reflection manager
    refman = TwoThetaReflectionManager(refs, experiments, nref_per_degree=20)

    # reflection predictor
    ref_predictor = TwoThetaExperimentsPredictor(experiments)

    # target function
    target = TwoThetaTarget(experiments, ref_predictor, refman, pred_param)

    # minimisation engine
    from dials.algorithms.refinement.engine import (
        LevenbergMarquardtIterations as Refinery, )

    refinery = Refinery(
        target=target,
        prediction_parameterisation=pred_param,
        log=None,
        max_iterations=20,
    )

    # Refiner
    from dials.algorithms.refinement.refiner import Refiner

    refiner = Refiner(
        experiments=experiments,
        pred_param=pred_param,
        param_reporter=param_reporter,
        refman=refman,
        target=target,
        refinery=refinery,
    )
    refiner.run()

    # compare crystal with original crystal
    refined_xl = refiner.get_experiments()[0].crystal

    # print refined_xl
    assert refined_xl.is_similar_to(orig_xl,
                                    uc_rel_length_tolerance=0.001,
                                    uc_abs_angle_tolerance=0.01)
Exemple #19
0
def init_test():

    models = setup_geometry.Extract(master_phil)

    single_panel_detector = models.detector
    gonio = models.goniometer
    crystal = models.crystal
    beam = models.beam

    # Make a 3x3 multi panel detector filling the same space as the existing
    # single panel detector. Each panel of the multi-panel detector has pixels
    # with 1/3 the length dimensions of the single panel.
    multi_panel_detector = Detector()
    for x in range(3):
        for y in range(3):
            new_panel = make_panel_in_array((x, y), single_panel_detector[0])
            multi_panel_detector.add_panel(new_panel)

    # Build a mock scan for a 180 degree sequence
    sf = ScanFactory()
    scan = sf.make_scan(
        image_range=(1, 1800),
        exposure_times=0.1,
        oscillation=(0, 0.1),
        epochs=list(range(1800)),
        deg=True,
    )
    sequence_range = scan.get_oscillation_range(deg=False)
    im_width = scan.get_oscillation(deg=False)[1]
    assert sequence_range == (0.0, pi)
    assert approx_equal(im_width, 0.1 * pi / 180.0)

    # Build ExperimentLists
    experiments_single_panel = ExperimentList()
    experiments_multi_panel = ExperimentList()
    experiments_single_panel.append(
        Experiment(
            beam=beam,
            detector=single_panel_detector,
            goniometer=gonio,
            scan=scan,
            crystal=crystal,
            imageset=None,
        )
    )
    experiments_multi_panel.append(
        Experiment(
            beam=beam,
            detector=multi_panel_detector,
            goniometer=gonio,
            scan=scan,
            crystal=crystal,
            imageset=None,
        )
    )

    # Generate some reflections

    # All indices in a 2.0 Angstrom sphere
    resolution = 2.0
    index_generator = IndexGenerator(
        crystal.get_unit_cell(),
        space_group(space_group_symbols(1).hall()).type(),
        resolution,
    )
    indices = index_generator.to_array()

    # for the reflection predictor, it doesn't matter which experiment list is
    # passed, as the detector is not used
    ref_predictor = ScansRayPredictor(
        experiments_single_panel, scan.get_oscillation_range(deg=False)
    )

    # get two sets of identical reflections
    obs_refs_single = ref_predictor(indices)
    obs_refs_multi = ref_predictor(indices)
    for r1, r2 in zip(obs_refs_single.rows(), obs_refs_multi.rows()):
        assert r1["s1"] == r2["s1"]

    # get the panel intersections
    sel = ray_intersection(single_panel_detector, obs_refs_single)
    obs_refs_single = obs_refs_single.select(sel)
    sel = ray_intersection(multi_panel_detector, obs_refs_multi)
    obs_refs_multi = obs_refs_multi.select(sel)
    assert len(obs_refs_single) == len(obs_refs_multi)

    # Set 'observed' centroids from the predicted ones
    obs_refs_single["xyzobs.mm.value"] = obs_refs_single["xyzcal.mm"]
    obs_refs_multi["xyzobs.mm.value"] = obs_refs_multi["xyzcal.mm"]

    # Invent some variances for the centroid positions of the simulated data
    im_width = 0.1 * pi / 180.0
    px_size = single_panel_detector[0].get_pixel_size()
    var_x = flex.double(len(obs_refs_single), (px_size[0] / 2.0) ** 2)
    var_y = flex.double(len(obs_refs_single), (px_size[1] / 2.0) ** 2)
    var_phi = flex.double(len(obs_refs_single), (im_width / 2.0) ** 2)

    # set the variances and frame numbers
    obs_refs_single["xyzobs.mm.variance"] = flex.vec3_double(var_x, var_y, var_phi)
    obs_refs_multi["xyzobs.mm.variance"] = flex.vec3_double(var_x, var_y, var_phi)

    # Add in flags and ID columns by copying into standard reflection tables
    tmp = flex.reflection_table.empty_standard(len(obs_refs_single))
    tmp.update(obs_refs_single)
    obs_refs_single = tmp
    tmp = flex.reflection_table.empty_standard(len(obs_refs_multi))
    tmp.update(obs_refs_multi)
    obs_refs_multi = tmp

    test_data = namedtuple(
        "test_data",
        [
            "experiments_single_panel",
            "experiments_multi_panel",
            "observations_single_panel",
            "observations_multi_panel",
        ],
    )

    return test_data(
        experiments_single_panel,
        experiments_multi_panel,
        obs_refs_single,
        obs_refs_multi,
    )
Exemple #20
0
def test(args=[]):
    # Python and cctbx imports
    from math import pi
    import random
    from scitbx import matrix
    from scitbx.array_family import flex
    from libtbx.phil import parse
    from libtbx.test_utils import approx_equal

    # Experimental model builder
    from dials.test.algorithms.refinement.setup_geometry import Extract

    # We will set up a mock scan and a mock experiment list
    from dxtbx.model import ScanFactory
    from dxtbx.model.experiment_list import ExperimentList, Experiment

    # Model parameterisations
    from dials.algorithms.refinement.parameterisation.detector_parameters import (
        DetectorParameterisationSinglePanel, )
    from dials.algorithms.refinement.parameterisation.beam_parameters import (
        BeamParameterisation, )
    from dials.algorithms.refinement.parameterisation.crystal_parameters import (
        CrystalOrientationParameterisation,
        CrystalUnitCellParameterisation,
    )

    # Reflection prediction
    from dials.algorithms.spot_prediction import IndexGenerator, ray_intersection
    from dials.algorithms.refinement.prediction.managed_predictors import (
        ScansRayPredictor,
        ScansExperimentsPredictor,
    )
    from cctbx.sgtbx import space_group, space_group_symbols

    # Parameterisation of the prediction equation
    from dials.algorithms.refinement.parameterisation.prediction_parameters import (
        XYPhiPredictionParameterisation, )

    # Imports for the target function
    from dials.algorithms.refinement.target import (
        LeastSquaresPositionalResidualWithRmsdCutoff, )
    from dials.algorithms.refinement.reflection_manager import ReflectionManager

    # Local functions
    def random_direction_close_to(vector, sd=0.5):
        return vector.rotate_around_origin(
            matrix.col((random.random(), random.random(),
                        random.random())).normalize(),
            random.gauss(0, sd),
            deg=True,
        )

    #############################
    # Setup experimental models #
    #############################

    # make a small cell to speed up calculations
    overrides = """geometry.parameters.crystal.a.length.range = 10 15
  geometry.parameters.crystal.b.length.range = 10 15
  geometry.parameters.crystal.c.length.range = 10 15"""

    master_phil = parse(
        """
      include scope dials.test.algorithms.refinement.geometry_phil
      """,
        process_includes=True,
    )

    models = Extract(master_phil, overrides, cmdline_args=args)

    mydetector = models.detector
    mygonio = models.goniometer
    mycrystal = models.crystal
    mybeam = models.beam

    # Build a mock scan for a 180 degree sweep of 0.1 degree images
    sf = ScanFactory()
    myscan = sf.make_scan(
        image_range=(1, 1800),
        exposure_times=0.1,
        oscillation=(0, 0.1),
        epochs=list(range(1800)),
        deg=True,
    )
    sweep_range = myscan.get_oscillation_range(deg=False)
    im_width = myscan.get_oscillation(deg=False)[1]
    assert sweep_range == (0.0, pi)
    assert approx_equal(im_width, 0.1 * pi / 180.0)

    experiments = ExperimentList()
    experiments.append(
        Experiment(
            beam=mybeam,
            detector=mydetector,
            goniometer=mygonio,
            scan=myscan,
            crystal=mycrystal,
            imageset=None,
        ))

    ###########################
    # Parameterise the models #
    ###########################

    det_param = DetectorParameterisationSinglePanel(mydetector)
    s0_param = BeamParameterisation(mybeam, mygonio)
    xlo_param = CrystalOrientationParameterisation(mycrystal)
    xluc_param = CrystalUnitCellParameterisation(mycrystal)

    ########################################################################
    # Link model parameterisations together into a parameterisation of the #
    # prediction equation                                                  #
    ########################################################################

    pred_param = XYPhiPredictionParameterisation(experiments, [det_param],
                                                 [s0_param], [xlo_param],
                                                 [xluc_param])

    ################################
    # Apply known parameter shifts #
    ################################

    # shift detector by 0.2 mm each translation and 2 mrad each rotation
    det_p_vals = det_param.get_param_vals()
    p_vals = [
        a + b for a, b in zip(det_p_vals, [2.0, 2.0, 2.0, 2.0, 2.0, 2.0])
    ]
    det_param.set_param_vals(p_vals)

    # shift beam by 2 mrad in one axis
    s0_p_vals = s0_param.get_param_vals()
    p_vals = list(s0_p_vals)
    p_vals[1] += 2.0
    s0_param.set_param_vals(p_vals)

    # rotate crystal a bit (=2 mrad each rotation)
    xlo_p_vals = xlo_param.get_param_vals()
    p_vals = [a + b for a, b in zip(xlo_p_vals, [2.0, 2.0, 2.0])]
    xlo_param.set_param_vals(p_vals)

    #############################
    # Generate some reflections #
    #############################

    # All indices in a 2.0 Angstrom sphere
    resolution = 2.0
    index_generator = IndexGenerator(
        mycrystal.get_unit_cell(),
        space_group(space_group_symbols(1).hall()).type(),
        resolution,
    )
    indices = index_generator.to_array()

    # Predict rays within the sweep range
    ray_predictor = ScansRayPredictor(experiments, sweep_range)
    obs_refs = ray_predictor(indices)

    # Take only those rays that intersect the detector
    intersects = ray_intersection(mydetector, obs_refs)
    obs_refs = obs_refs.select(intersects)

    # Make a reflection predictor and re-predict for all these reflections. The
    # result is the same, but we gain also the flags and xyzcal.px columns
    ref_predictor = ScansExperimentsPredictor(experiments)
    obs_refs["id"] = flex.int(len(obs_refs), 0)
    obs_refs = ref_predictor(obs_refs)

    # Set 'observed' centroids from the predicted ones
    obs_refs["xyzobs.mm.value"] = obs_refs["xyzcal.mm"]

    # Invent some variances for the centroid positions of the simulated data
    im_width = 0.1 * pi / 180.0
    px_size = mydetector[0].get_pixel_size()
    var_x = flex.double(len(obs_refs), (px_size[0] / 2.0)**2)
    var_y = flex.double(len(obs_refs), (px_size[1] / 2.0)**2)
    var_phi = flex.double(len(obs_refs), (im_width / 2.0)**2)
    obs_refs["xyzobs.mm.variance"] = flex.vec3_double(var_x, var_y, var_phi)

    ###############################
    # Undo known parameter shifts #
    ###############################

    s0_param.set_param_vals(s0_p_vals)
    det_param.set_param_vals(det_p_vals)
    xlo_param.set_param_vals(xlo_p_vals)

    #####################################
    # Select reflections for refinement #
    #####################################

    refman = ReflectionManager(obs_refs, experiments)

    ##############################
    # Set up the target function #
    ##############################

    # Redefine the reflection predictor to use the type expected by the Target class
    ref_predictor = ScansExperimentsPredictor(experiments)

    mytarget = LeastSquaresPositionalResidualWithRmsdCutoff(
        experiments,
        ref_predictor,
        refman,
        pred_param,
        restraints_parameterisation=None)

    # get the functional and gradients
    mytarget.predict()
    L, dL_dp, curvs = mytarget.compute_functional_gradients_and_curvatures()

    ####################################
    # Do FD calculation for comparison #
    ####################################

    # function for calculating finite difference gradients of the target function
    def get_fd_gradients(target, pred_param, deltas):
        """Calculate centered finite difference gradients for each of the
        parameters of the target function.

        "deltas" must be a sequence of the same length as the parameter list, and
        contains the step size for the difference calculations for each parameter.
        """

        p_vals = pred_param.get_param_vals()
        assert len(deltas) == len(p_vals)
        fd_grad = []
        fd_curvs = []

        for i in range(len(deltas)):
            val = p_vals[i]

            p_vals[i] -= deltas[i] / 2.0
            pred_param.set_param_vals(p_vals)
            target.predict()

            rev_state = target.compute_functional_gradients_and_curvatures()

            p_vals[i] += deltas[i]
            pred_param.set_param_vals(p_vals)

            target.predict()

            fwd_state = target.compute_functional_gradients_and_curvatures()

            # finite difference estimation of first derivatives
            fd_grad.append((fwd_state[0] - rev_state[0]) / deltas[i])

            # finite difference estimation of curvatures, using the analytical
            # first derivatives
            fd_curvs.append((fwd_state[1][i] - rev_state[1][i]) / deltas[i])

            # set parameter back to centred value
            p_vals[i] = val

        # return to the initial state
        pred_param.set_param_vals(p_vals)

        return fd_grad, fd_curvs

    # test normalised differences between FD and analytical calculations
    fdgrads = get_fd_gradients(mytarget, pred_param,
                               [1.0e-7] * len(pred_param))
    diffs = [a - b for a, b in zip(dL_dp, fdgrads[0])]
    norm_diffs = tuple([a / b for a, b in zip(diffs, fdgrads[0])])
    for e in norm_diffs:
        assert abs(e) < 0.001  # check differences less than 0.1%

    # test normalised differences between FD curvatures and analytical least
    # squares approximation. We don't expect this to be especially close
    if curvs:
        diffs = [a - b for a, b in zip(curvs, fdgrads[1])]
        norm_diffs = tuple([a / b for a, b in zip(diffs, fdgrads[1])])
        for e in norm_diffs:
            assert abs(e) < 0.1  # check differences less than 10%
Exemple #21
0
exp.detector = detector2

# Make the scan a full turn to ensure no reflections get thrown out during
# refinement for being outside the scan range
image_width_deg = scan.get_oscillation(deg=True)[1]
nimages = int(round(360.0 / image_width_deg))
image_width_deg = 360.0 / nimages
image_range = 1, nimages
epochs = [0] * nimages
exposure_times = 0.0
oscillation = (0, image_width_deg)
from dxtbx.model import ScanFactory

exp.scan = ScanFactory.make_scan(image_range,
                                 exposure_times,
                                 oscillation,
                                 epochs,
                                 deg=True)

from dxtbx.model.experiment_list import ExperimentListDumper

dump = ExperimentListDumper(el)
dump.as_json("experiments_ED_regularised.json")

# Now regularize to standard MX geometry
# Set beam energy to 12 keV
# lambda = h*c / E
# lambda = 1.98645e-25 / 1.92261e-15
beam.set_wavelength(1.0332)

# Pilatus 6M-like
Exemple #22
0
geometry.parameters.random_seed = 42"""
models = setup_geometry.Extract(master_phil,
                                cmdline_args=args,
                                local_overrides=param)

crystal = models.crystal
mydetector = models.detector
mygonio = models.goniometer
mybeam = models.beam

# Build a mock scan for a 1.5 degree wedge. Only used for generating indices near
# the Ewald sphere
sf = ScanFactory()
myscan = sf.make_scan(image_range=(1, 1),
                      exposure_times=0.1,
                      oscillation=(0, 1.5),
                      epochs=range(1),
                      deg=True)
sweep_range = myscan.get_oscillation_range(deg=False)
im_width = myscan.get_oscillation(deg=False)[1]
assert approx_equal(im_width, 1.5 * pi / 180.)

# Build experiment lists
stills_experiments = ExperimentList()
stills_experiments.append(
    Experiment(beam=mybeam,
               detector=mydetector,
               crystal=crystal,
               imageset=None))
scans_experiments = ExperimentList()
scans_experiments.append(
def test2():
    """Test on simulated data"""

    # Get models for reflection prediction
    import dials.test.algorithms.refinement.setup_geometry as setup_geometry

    from libtbx.phil import parse

    overrides = """geometry.parameters.crystal.a.length.value = 77
  geometry.parameters.crystal.b.length.value = 77
  geometry.parameters.crystal.c.length.value = 37"""

    master_phil = parse(
        """
      include scope dials.test.algorithms.refinement.geometry_phil
      """,
        process_includes=True,
    )

    from dxtbx.model import Crystal

    models = setup_geometry.Extract(master_phil)
    crystal = Crystal(
        real_space_a=(2.62783398111729, -63.387215823567125,
                      -45.751375737456975),
        real_space_b=(15.246640559660356, -44.48254330406616,
                      62.50501032727026),
        real_space_c=(-76.67246874451074, -11.01804131886244,
                      10.861322446352226),
        space_group_symbol="I 2 3",
    )
    detector = models.detector
    goniometer = models.goniometer
    beam = models.beam

    # Build a mock scan for a 180 degree sweep
    from dxtbx.model import ScanFactory

    sf = ScanFactory()
    scan = sf.make_scan(
        image_range=(1, 1800),
        exposure_times=0.1,
        oscillation=(0, 0.1),
        epochs=range(1800),
        deg=True,
    )

    # Build an experiment list
    from dxtbx.model.experiment_list import ExperimentList, Experiment

    experiments = ExperimentList()
    experiments.append(
        Experiment(
            beam=beam,
            detector=detector,
            goniometer=goniometer,
            scan=scan,
            crystal=crystal,
            imageset=None,
        ))

    # Generate all indices in a 1.5 Angstrom sphere
    from dials.algorithms.spot_prediction import IndexGenerator
    from cctbx.sgtbx import space_group, space_group_symbols

    resolution = 1.5
    index_generator = IndexGenerator(
        crystal.get_unit_cell(),
        space_group(space_group_symbols(1).hall()).type(),
        resolution,
    )
    indices = index_generator.to_array()

    # Predict rays within the sweep range
    from dials.algorithms.refinement.prediction import ScansRayPredictor

    sweep_range = scan.get_oscillation_range(deg=False)
    ray_predictor = ScansRayPredictor(experiments, sweep_range)
    obs_refs = ray_predictor(indices)

    # Take only those rays that intersect the detector
    from dials.algorithms.spot_prediction import ray_intersection

    intersects = ray_intersection(detector, obs_refs)
    obs_refs = obs_refs.select(intersects)

    # Make a reflection predictor and re-predict for all these reflections. The
    # result is the same, but we gain also the flags and xyzcal.px columns
    from dials.algorithms.refinement.prediction import ExperimentsPredictor

    ref_predictor = ExperimentsPredictor(experiments)
    obs_refs["id"] = flex.int(len(obs_refs), 0)
    obs_refs = ref_predictor(obs_refs)

    # Copy 'observed' centroids from the predicted ones, applying sinusoidal
    # offsets
    obs_x, obs_y, obs_z = obs_refs["xyzcal.mm"].parts()

    # obs_z is in range (0, pi). Calculate offsets for phi at twice that
    # frequency
    im_width = scan.get_oscillation(deg=False)[1]
    z_off = flex.sin(2 * obs_z) * im_width
    obs_z += z_off

    # Calculate offsets for x
    pixel_size = detector[0].get_pixel_size()
    x_off = flex.sin(20 * obs_z) * pixel_size[0]

    # Calculate offsets for y with a phase-shifted sine wave
    from math import pi

    y_off = flex.sin(4 * obs_z + pi / 6) * pixel_size[1]

    # Incorporate the offsets into the 'observed' centroids
    obs_z += z_off
    obs_x += x_off
    obs_y += y_off
    obs_refs["xyzobs.mm.value"] = flex.vec3_double(obs_x, obs_y, obs_z)

    # Now do centroid analysis of the residuals
    results = CentroidAnalyser(obs_refs, debug=True)()

    # FIXME this test shows that the suggested interval width heuristic is not
    # yet robust. This simulation function seems a useful direction to proceed
    # in though
    raise RuntimeError("test2 failed")

    print("OK")
    return
def test(args=[]):
    # Python and cctbx imports
    from math import pi
    from scitbx import matrix
    from libtbx.phil import parse
    from libtbx.test_utils import approx_equal

    # Import for surgery on reflection_tables
    from dials.array_family import flex

    # Get module to build models using PHIL
    import dials.test.algorithms.refinement.setup_geometry as setup_geometry

    # We will set up a mock scan and a mock experiment list
    from dxtbx.model import ScanFactory
    from dxtbx.model.experiment_list import ExperimentList, Experiment

    # Crystal parameterisations
    from dials.algorithms.refinement.parameterisation.crystal_parameters import (
        CrystalOrientationParameterisation,
        CrystalUnitCellParameterisation,
    )

    # Symmetry constrained parameterisation for the unit cell
    from cctbx.uctbx import unit_cell
    from rstbx.symmetry.constraints.parameter_reduction import symmetrize_reduce_enlarge

    # Reflection prediction
    from dials.algorithms.spot_prediction import IndexGenerator
    from dials.algorithms.refinement.prediction.managed_predictors import (
        ScansRayPredictor,
        StillsExperimentsPredictor,
    )
    from dials.algorithms.spot_prediction import ray_intersection
    from cctbx.sgtbx import space_group, space_group_symbols

    #############################
    # Setup experimental models #
    #############################

    master_phil = parse(
        """
      include scope dials.test.algorithms.refinement.geometry_phil
      include scope dials.test.algorithms.refinement.minimiser_phil
      """,
        process_includes=True,
    )

    # build models, with a larger crystal than default in order to get enough
    # reflections on the 'still' image
    param = """
  geometry.parameters.crystal.a.length.range=40 50;
  geometry.parameters.crystal.b.length.range=40 50;
  geometry.parameters.crystal.c.length.range=40 50;
  geometry.parameters.random_seed = 42"""
    models = setup_geometry.Extract(master_phil,
                                    cmdline_args=args,
                                    local_overrides=param)

    crystal = models.crystal
    mydetector = models.detector
    mygonio = models.goniometer
    mybeam = models.beam

    # Build a mock scan for a 1.5 degree wedge. Only used for generating indices near
    # the Ewald sphere
    sf = ScanFactory()
    myscan = sf.make_scan(
        image_range=(1, 1),
        exposure_times=0.1,
        oscillation=(0, 1.5),
        epochs=list(range(1)),
        deg=True,
    )
    sweep_range = myscan.get_oscillation_range(deg=False)
    im_width = myscan.get_oscillation(deg=False)[1]
    assert approx_equal(im_width, 1.5 * pi / 180.0)

    # Build experiment lists
    stills_experiments = ExperimentList()
    stills_experiments.append(
        Experiment(beam=mybeam,
                   detector=mydetector,
                   crystal=crystal,
                   imageset=None))
    scans_experiments = ExperimentList()
    scans_experiments.append(
        Experiment(
            beam=mybeam,
            detector=mydetector,
            crystal=crystal,
            goniometer=mygonio,
            scan=myscan,
            imageset=None,
        ))

    ##########################################################
    # Parameterise the models (only for perturbing geometry) #
    ##########################################################

    xlo_param = CrystalOrientationParameterisation(crystal)
    xluc_param = CrystalUnitCellParameterisation(crystal)

    ################################
    # Apply known parameter shifts #
    ################################

    # rotate crystal (=5 mrad each rotation)
    xlo_p_vals = []
    p_vals = xlo_param.get_param_vals()
    xlo_p_vals.append(p_vals)
    new_p_vals = [a + b for a, b in zip(p_vals, [5.0, 5.0, 5.0])]
    xlo_param.set_param_vals(new_p_vals)

    # change unit cell (=1.0 Angstrom length upsets, 0.5 degree of
    # gamma angle)
    xluc_p_vals = []
    p_vals = xluc_param.get_param_vals()
    xluc_p_vals.append(p_vals)
    cell_params = crystal.get_unit_cell().parameters()
    cell_params = [
        a + b for a, b in zip(cell_params, [1.0, 1.0, -1.0, 0.0, 0.0, 0.5])
    ]
    new_uc = unit_cell(cell_params)
    newB = matrix.sqr(new_uc.fractionalization_matrix()).transpose()
    S = symmetrize_reduce_enlarge(crystal.get_space_group())
    S.set_orientation(orientation=newB)
    X = tuple([e * 1.0e5 for e in S.forward_independent_parameters()])
    xluc_param.set_param_vals(X)

    # keep track of the target crystal model to compare with refined
    from copy import deepcopy

    target_crystal = deepcopy(crystal)

    #############################
    # Generate some reflections #
    #############################

    # All indices in a 2.0 Angstrom sphere for crystal
    resolution = 2.0
    index_generator = IndexGenerator(
        crystal.get_unit_cell(),
        space_group(space_group_symbols(1).hall()).type(),
        resolution,
    )
    indices = index_generator.to_array()

    # Build a ray predictor and predict rays close to the Ewald sphere by using
    # the narrow rotation scan
    ref_predictor = ScansRayPredictor(scans_experiments, sweep_range)
    obs_refs = ref_predictor(indices, experiment_id=0)

    # Take only those rays that intersect the detector
    intersects = ray_intersection(mydetector, obs_refs)
    obs_refs = obs_refs.select(intersects)

    # Add in flags and ID columns by copying into standard reflection table
    tmp = flex.reflection_table.empty_standard(len(obs_refs))
    tmp.update(obs_refs)
    obs_refs = tmp

    # Invent some variances for the centroid positions of the simulated data
    im_width = 0.1 * pi / 180.0
    px_size = mydetector[0].get_pixel_size()
    var_x = flex.double(len(obs_refs), (px_size[0] / 2.0)**2)
    var_y = flex.double(len(obs_refs), (px_size[1] / 2.0)**2)
    var_phi = flex.double(len(obs_refs), (im_width / 2.0)**2)
    obs_refs["xyzobs.mm.variance"] = flex.vec3_double(var_x, var_y, var_phi)

    # Re-predict using the stills reflection predictor
    stills_ref_predictor = StillsExperimentsPredictor(stills_experiments)
    obs_refs_stills = stills_ref_predictor(obs_refs)

    # Set 'observed' centroids from the predicted ones
    obs_refs_stills["xyzobs.mm.value"] = obs_refs_stills["xyzcal.mm"]

    ###############################
    # Undo known parameter shifts #
    ###############################

    xlo_param.set_param_vals(xlo_p_vals[0])
    xluc_param.set_param_vals(xluc_p_vals[0])

    # make a refiner
    from dials.algorithms.refinement.refiner import phil_scope

    params = phil_scope.fetch(source=parse("")).extract()

    # Change this to get a plot
    do_plot = False
    if do_plot:
        params.refinement.refinery.journal.track_parameter_correlation = True

    from dials.algorithms.refinement.refiner import RefinerFactory

    # decrease bin_size_fraction to terminate on RMSD convergence
    params.refinement.target.bin_size_fraction = 0.01
    params.refinement.parameterisation.beam.fix = "all"
    params.refinement.parameterisation.detector.fix = "all"
    refiner = RefinerFactory.from_parameters_data_experiments(
        params, obs_refs_stills, stills_experiments)

    # run refinement
    history = refiner.run()

    # regression tests
    assert len(history["rmsd"]) == 9

    refined_crystal = refiner.get_experiments()[0].crystal
    uc1 = refined_crystal.get_unit_cell()
    uc2 = target_crystal.get_unit_cell()
    assert uc1.is_similar_to(uc2)

    if do_plot:
        plt = refiner.parameter_correlation_plot(
            len(history["parameter_correlation"]) - 1)
        plt.show()
def test():
    # Build models, with a larger crystal than default in order to get plenty of
    # reflections on the 'still' image
    overrides = """
  geometry.parameters.crystal.a.length.range=40 50;
  geometry.parameters.crystal.b.length.range=40 50;
  geometry.parameters.crystal.c.length.range=40 50;
  geometry.parameters.random_seed = 42"""

    master_phil = parse(
        """
      include scope dials.test.algorithms.refinement.geometry_phil
      """,
        process_includes=True,
    )

    models = Extract(master_phil, overrides)

    mydetector = models.detector
    mygonio = models.goniometer
    mycrystal = models.crystal
    mybeam = models.beam

    # Build a mock scan for a 3 degree sweep
    from dxtbx.model import ScanFactory

    sf = ScanFactory()
    myscan = sf.make_scan(
        image_range=(1, 1),
        exposure_times=0.1,
        oscillation=(0, 3.0),
        epochs=list(range(1)),
        deg=True,
    )
    sweep_range = myscan.get_oscillation_range(deg=False)

    # Create parameterisations of these models
    det_param = DetectorParameterisationSinglePanel(mydetector)
    s0_param = BeamParameterisation(mybeam, mygonio)
    xlo_param = CrystalOrientationParameterisation(mycrystal)
    xluc_param = CrystalUnitCellParameterisation(mycrystal)

    # Create a scans ExperimentList, only for generating reflections
    experiments = ExperimentList()
    experiments.append(
        Experiment(
            beam=mybeam,
            detector=mydetector,
            goniometer=mygonio,
            scan=myscan,
            crystal=mycrystal,
            imageset=None,
        ))

    # Create a stills ExperimentList
    stills_experiments = ExperimentList()
    stills_experiments.append(
        Experiment(beam=mybeam,
                   detector=mydetector,
                   crystal=mycrystal,
                   imageset=None))

    # Generate rays - only to work out which hkls are predicted
    ray_predictor = ScansRayPredictor(experiments, sweep_range)
    resolution = 2.0
    index_generator = IndexGenerator(
        mycrystal.get_unit_cell(),
        space_group(space_group_symbols(1).hall()).type(),
        resolution,
    )
    indices = index_generator.to_array()
    rays = ray_predictor(indices)

    # Make a standard reflection_table and copy in the ray data
    reflections = flex.reflection_table.empty_standard(len(rays))
    reflections.update(rays)

    # Build a standard prediction parameterisation for the stills experiment to do
    # FD calculation (not used for its analytical gradients)
    pred_param = StillsPredictionParameterisation(
        stills_experiments,
        detector_parameterisations=[det_param],
        beam_parameterisations=[s0_param],
        xl_orientation_parameterisations=[xlo_param],
        xl_unit_cell_parameterisations=[xluc_param],
    )

    # Make a managed SphericalRelpStillsReflectionPredictor reflection predictor
    # for the first (only) experiment
    ref_predictor = Predictor(stills_experiments)

    # Predict these reflections in place. Must do this ahead of calculating
    # the analytical gradients so quantities like s1 are correct
    ref_predictor.update()
    ref_predictor.predict(reflections)

    # calculate analytical gradients
    ag = AnalyticalGradients(
        stills_experiments,
        detector_parameterisation=det_param,
        beam_parameterisation=s0_param,
        xl_orientation_parameterisation=xlo_param,
        xl_unit_cell_parameterisation=xluc_param,
    )
    an_grads = ag.get_beam_gradients(reflections)
    an_grads.update(ag.get_crystal_orientation_gradients(reflections))
    an_grads.update(ag.get_crystal_unit_cell_gradients(reflections))

    # get finite difference gradients
    p_vals = pred_param.get_param_vals()
    deltas = [1.0e-7] * len(p_vals)

    fd_grads = []
    p_names = pred_param.get_param_names()
    for i, delta in enumerate(deltas):

        # save parameter value
        val = p_vals[i]

        # calc reverse state
        p_vals[i] -= delta / 2.0
        pred_param.set_param_vals(p_vals)

        ref_predictor.update()
        ref_predictor.predict(reflections)

        x, y, _ = reflections["xyzcal.mm"].deep_copy().parts()
        s1 = reflections["s1"].deep_copy()
        rev_state = s1

        # calc forward state
        p_vals[i] += delta
        pred_param.set_param_vals(p_vals)

        ref_predictor.update()
        ref_predictor.predict(reflections)

        x, y, _ = reflections["xyzcal.mm"].deep_copy().parts()
        s1 = reflections["s1"].deep_copy()
        fwd_state = s1

        # reset parameter to saved value
        p_vals[i] = val

        # finite difference - currently for s1 only
        fd = fwd_state - rev_state
        inv_delta = 1.0 / delta
        s1_grads = fd * inv_delta

        # store gradients
        fd_grads.append({"name": p_names[i], "ds1": s1_grads})

    # return to the initial state
    pred_param.set_param_vals(p_vals)

    for i, fd_grad in enumerate(fd_grads):

        ## compare FD with analytical calculations
        print("\n\nParameter {0}: {1}".format(i, fd_grad["name"]))

        print("d[s1]/dp for the first reflection")
        print("finite diff", fd_grad["ds1"][0])
        try:
            an_grad = an_grads[fd_grad["name"]]
        except KeyError:
            continue

        print("checking analytical vs finite difference gradients for s1")
        for a, b in zip(fd_grad["ds1"], an_grad["ds1"]):
            assert a == pytest.approx(b, abs=1e-7)
Exemple #26
0
def test():
    # Python and cctbx imports
    from math import pi
    from scitbx import matrix
    from scitbx.array_family import flex
    from libtbx.phil import parse
    from libtbx.test_utils import approx_equal

    # Get modules to build models and minimiser using PHIL
    import dials.test.algorithms.refinement.setup_geometry as setup_geometry
    import dials.test.algorithms.refinement.setup_minimiser as setup_minimiser

    # We will set up a mock scan and a mock experiment list
    from dxtbx.model import ScanFactory
    from dxtbx.model.experiment_list import ExperimentList, Experiment

    # Model parameterisations
    from dials.algorithms.refinement.parameterisation.detector_parameters import (
        DetectorParameterisationSinglePanel, )
    from dials.algorithms.refinement.parameterisation.beam_parameters import (
        BeamParameterisation, )
    from dials.algorithms.refinement.parameterisation.crystal_parameters import (
        CrystalOrientationParameterisation,
        CrystalUnitCellParameterisation,
    )

    # Symmetry constrained parameterisation for the unit cell
    from cctbx.uctbx import unit_cell
    from rstbx.symmetry.constraints.parameter_reduction import symmetrize_reduce_enlarge

    # Reflection prediction
    from dials.algorithms.spot_prediction import IndexGenerator, ray_intersection
    from dials.algorithms.refinement.prediction.managed_predictors import (
        ScansRayPredictor,
        ScansExperimentsPredictor,
    )
    from cctbx.sgtbx import space_group, space_group_symbols

    # Parameterisation of the prediction equation
    from dials.algorithms.refinement.parameterisation.prediction_parameters import (
        XYPhiPredictionParameterisation, )

    # Imports for the target function
    from dials.algorithms.refinement.target import (
        LeastSquaresPositionalResidualWithRmsdCutoff, )
    from dials.algorithms.refinement.reflection_manager import ReflectionManager

    #############################
    # Setup experimental models #
    #############################

    override = """geometry.parameters
  {
    beam.wavelength.random=False
    beam.wavelength.value=1.0
    beam.direction.inclination.random=False
    crystal.a.length.random=False
    crystal.a.length.value=12.0
    crystal.a.direction.method=exactly
    crystal.a.direction.exactly.direction=1.0 0.002 -0.004
    crystal.b.length.random=False
    crystal.b.length.value=14.0
    crystal.b.direction.method=exactly
    crystal.b.direction.exactly.direction=-0.002 1.0 0.002
    crystal.c.length.random=False
    crystal.c.length.value=13.0
    crystal.c.direction.method=exactly
    crystal.c.direction.exactly.direction=0.002 -0.004 1.0
    detector.directions.method=exactly
    detector.directions.exactly.dir1=0.99 0.002 -0.004
    detector.directions.exactly.norm=0.002 -0.001 0.99
    detector.centre.method=exactly
    detector.centre.exactly.value=1.0 -0.5 199.0
  }"""

    master_phil = parse(
        """
  include scope dials.test.algorithms.refinement.geometry_phil
  include scope dials.test.algorithms.refinement.minimiser_phil
  """,
        process_includes=True,
    )

    models = setup_geometry.Extract(master_phil,
                                    local_overrides=override,
                                    verbose=False)

    mydetector = models.detector
    mygonio = models.goniometer
    mycrystal = models.crystal
    mybeam = models.beam

    ###########################
    # Parameterise the models #
    ###########################

    det_param = DetectorParameterisationSinglePanel(mydetector)
    s0_param = BeamParameterisation(mybeam, mygonio)
    xlo_param = CrystalOrientationParameterisation(mycrystal)
    xluc_param = CrystalUnitCellParameterisation(mycrystal)

    # Fix beam to the X-Z plane (imgCIF geometry), fix wavelength
    s0_param.set_fixed([True, False, True])

    ########################################################################
    # Link model parameterisations together into a parameterisation of the #
    # prediction equation                                                  #
    ########################################################################

    # Build a mock scan for a 180 degree sweep
    sf = ScanFactory()
    myscan = sf.make_scan(
        image_range=(1, 1800),
        exposure_times=0.1,
        oscillation=(0, 0.1),
        epochs=list(range(1800)),
        deg=True,
    )

    # Build an ExperimentList
    experiments = ExperimentList()
    experiments.append(
        Experiment(
            beam=mybeam,
            detector=mydetector,
            goniometer=mygonio,
            scan=myscan,
            crystal=mycrystal,
            imageset=None,
        ))

    # Create the PredictionParameterisation
    pred_param = XYPhiPredictionParameterisation(experiments, [det_param],
                                                 [s0_param], [xlo_param],
                                                 [xluc_param])

    ################################
    # Apply known parameter shifts #
    ################################

    # shift detector by 1.0 mm each translation and 4 mrad each rotation
    det_p_vals = det_param.get_param_vals()
    p_vals = [
        a + b for a, b in zip(det_p_vals, [1.0, 1.0, 1.0, 4.0, 4.0, 4.0])
    ]
    det_param.set_param_vals(p_vals)

    # shift beam by 4 mrad in free axis
    s0_p_vals = s0_param.get_param_vals()
    p_vals = list(s0_p_vals)

    p_vals[0] += 4.0
    s0_param.set_param_vals(p_vals)

    # rotate crystal a bit (=3 mrad each rotation)
    xlo_p_vals = xlo_param.get_param_vals()
    p_vals = [a + b for a, b in zip(xlo_p_vals, [3.0, 3.0, 3.0])]
    xlo_param.set_param_vals(p_vals)

    # change unit cell a bit (=0.1 Angstrom length upsets, 0.1 degree of
    # alpha and beta angles)
    xluc_p_vals = xluc_param.get_param_vals()
    cell_params = mycrystal.get_unit_cell().parameters()
    cell_params = [
        a + b for a, b in zip(cell_params, [0.1, -0.1, 0.1, 0.1, -0.1, 0.0])
    ]
    new_uc = unit_cell(cell_params)
    newB = matrix.sqr(new_uc.fractionalization_matrix()).transpose()
    S = symmetrize_reduce_enlarge(mycrystal.get_space_group())
    S.set_orientation(orientation=newB)
    X = tuple([e * 1.0e5 for e in S.forward_independent_parameters()])
    xluc_param.set_param_vals(X)

    #############################
    # Generate some reflections #
    #############################

    # All indices in a 2.0 Angstrom sphere
    resolution = 2.0
    index_generator = IndexGenerator(
        mycrystal.get_unit_cell(),
        space_group(space_group_symbols(1).hall()).type(),
        resolution,
    )
    indices = index_generator.to_array()

    sweep_range = myscan.get_oscillation_range(deg=False)
    im_width = myscan.get_oscillation(deg=False)[1]
    assert sweep_range == (0.0, pi)
    assert approx_equal(im_width, 0.1 * pi / 180.0)

    # Predict rays within the sweep range
    ray_predictor = ScansRayPredictor(experiments, sweep_range)
    obs_refs = ray_predictor(indices)

    # Take only those rays that intersect the detector
    intersects = ray_intersection(mydetector, obs_refs)
    obs_refs = obs_refs.select(intersects)

    # Make a reflection predictor and re-predict for all these reflections. The
    # result is the same, but we gain also the flags and xyzcal.px columns
    ref_predictor = ScansExperimentsPredictor(experiments)
    obs_refs["id"] = flex.int(len(obs_refs), 0)
    obs_refs = ref_predictor(obs_refs)

    # Set 'observed' centroids from the predicted ones
    obs_refs["xyzobs.mm.value"] = obs_refs["xyzcal.mm"]

    # Invent some variances for the centroid positions of the simulated data
    im_width = 0.1 * pi / 180.0
    px_size = mydetector[0].get_pixel_size()
    var_x = flex.double(len(obs_refs), (px_size[0] / 2.0)**2)
    var_y = flex.double(len(obs_refs), (px_size[1] / 2.0)**2)
    var_phi = flex.double(len(obs_refs), (im_width / 2.0)**2)
    obs_refs["xyzobs.mm.variance"] = flex.vec3_double(var_x, var_y, var_phi)

    # The total number of observations should be 1128
    assert len(obs_refs) == 1128

    ###############################
    # Undo known parameter shifts #
    ###############################

    s0_param.set_param_vals(s0_p_vals)
    det_param.set_param_vals(det_p_vals)
    xlo_param.set_param_vals(xlo_p_vals)
    xluc_param.set_param_vals(xluc_p_vals)

    #####################################
    # Select reflections for refinement #
    #####################################

    refman = ReflectionManager(obs_refs,
                               experiments,
                               outlier_detector=None,
                               close_to_spindle_cutoff=0.1)

    ##############################
    # Set up the target function #
    ##############################

    # The current 'achieved' criterion compares RMSD against 1/3 the pixel size and
    # 1/3 the image width in radians. For the simulated data, these are just made up
    mytarget = LeastSquaresPositionalResidualWithRmsdCutoff(
        experiments,
        ref_predictor,
        refman,
        pred_param,
        restraints_parameterisation=None)

    ######################################
    # Set up the LSTBX refinement engine #
    ######################################

    overrides = """minimiser.parameters.engine=GaussNewton
  minimiser.parameters.logfile=None"""
    refiner = setup_minimiser.Extract(master_phil,
                                      mytarget,
                                      pred_param,
                                      local_overrides=overrides).refiner

    refiner.run()

    assert mytarget.achieved()
    assert refiner.get_num_steps() == 1
    assert approx_equal(
        mytarget.rmsds(),
        (0.00508252354876, 0.00420954552156, 8.97303428289e-05))

    ###############################
    # Undo known parameter shifts #
    ###############################

    s0_param.set_param_vals(s0_p_vals)
    det_param.set_param_vals(det_p_vals)
    xlo_param.set_param_vals(xlo_p_vals)
    xluc_param.set_param_vals(xluc_p_vals)

    ######################################################
    # Set up the LBFGS with curvatures refinement engine #
    ######################################################

    overrides = """minimiser.parameters.engine=LBFGScurvs
  minimiser.parameters.logfile=None"""
    refiner = setup_minimiser.Extract(master_phil,
                                      mytarget,
                                      pred_param,
                                      local_overrides=overrides).refiner

    refiner.run()

    assert mytarget.achieved()
    assert refiner.get_num_steps() == 9
    assert approx_equal(mytarget.rmsds(),
                        (0.0558857700305, 0.0333446685335, 0.000347402754278))
Exemple #27
0
def test_fd_derivatives():
    """Test derivatives of the prediction equation"""

    from libtbx.phil import parse

    # Import model builder
    from dials.test.algorithms.refinement.setup_geometry import Extract

    # Create models
    overrides = """geometry.parameters.crystal.a.length.range = 10 50
  geometry.parameters.crystal.b.length.range = 10 50
  geometry.parameters.crystal.c.length.range = 10 50"""
    master_phil = parse(
        """
      include scope dials.test.algorithms.refinement.geometry_phil
      """,
        process_includes=True,
    )
    models = Extract(master_phil, overrides)

    mydetector = models.detector
    mygonio = models.goniometer
    mycrystal = models.crystal
    mybeam = models.beam

    # Build a mock scan for a 72 degree sequence
    from dxtbx.model import ScanFactory

    sf = ScanFactory()
    myscan = sf.make_scan(
        image_range=(1, 720),
        exposure_times=0.1,
        oscillation=(0, 0.1),
        epochs=list(range(720)),
        deg=True,
    )

    # Create a parameterisation of the crystal unit cell
    from dials.algorithms.refinement.parameterisation.crystal_parameters import (
        CrystalUnitCellParameterisation, )

    xluc_param = CrystalUnitCellParameterisation(mycrystal)

    # Create an ExperimentList
    experiments = ExperimentList()
    experiments.append(
        Experiment(
            beam=mybeam,
            detector=mydetector,
            goniometer=mygonio,
            scan=myscan,
            crystal=mycrystal,
            imageset=None,
        ))

    # Build a prediction parameterisation for two theta prediction
    pred_param = TwoThetaPredictionParameterisation(
        experiments,
        detector_parameterisations=None,
        beam_parameterisations=None,
        xl_orientation_parameterisations=None,
        xl_unit_cell_parameterisations=[xluc_param],
    )

    # Generate some reflections
    obs_refs, ref_predictor = generate_reflections(experiments)

    # Build a ReflectionManager with overloads for handling 2theta residuals
    refman = TwoThetaReflectionManager(obs_refs,
                                       experiments,
                                       outlier_detector=None)

    # Build a TwoThetaExperimentsPredictor
    ref_predictor = TwoThetaExperimentsPredictor(experiments)

    # Make a target for the least squares 2theta residual
    target = TwoThetaTarget(experiments, ref_predictor, refman, pred_param)

    # Keep only reflections that pass inclusion criteria and have predictions
    reflections = refman.get_matches()

    # Get analytical gradients
    an_grads = pred_param.get_gradients(reflections)

    # Get finite difference gradients
    p_vals = pred_param.get_param_vals()
    deltas = [1.0e-7] * len(p_vals)

    for i in range(len(deltas)):

        val = p_vals[i]

        p_vals[i] -= deltas[i] / 2.0
        pred_param.set_param_vals(p_vals)

        target.predict()
        reflections = refman.get_matches()

        rev_state = reflections["2theta_resid"].deep_copy()

        p_vals[i] += deltas[i]
        pred_param.set_param_vals(p_vals)

        target.predict()
        reflections = refman.get_matches()

        fwd_state = reflections["2theta_resid"].deep_copy()
        p_vals[i] = val

        fd = fwd_state - rev_state
        fd /= deltas[i]

        # compare with analytical calculation
        assert approx_equal(fd, an_grads[i]["d2theta_dp"], eps=1.0e-6)

    # return to the initial state
    pred_param.set_param_vals(p_vals)
Exemple #28
0
    def _scan(self):
        """Dummy scan for this image"""

        fname = os.path.split(self._image_file)[-1]
        index = int(fname.split("_")[-1].split(".")[0])
        return ScanFactory.make_scan((index, index), 0.0, (0, 0.5), {index: 0})
def test():
    from cctbx.sgtbx import space_group, space_group_symbols

    # We will set up a mock scan
    from dxtbx.model import ScanFactory
    from dxtbx.model.experiment_list import Experiment, ExperimentList
    from libtbx.phil import parse
    from scitbx import matrix
    from scitbx.array_family import flex

    from dials.algorithms.refinement.prediction.managed_predictors import (
        ScansExperimentsPredictor,
        ScansRayPredictor,
    )

    # Reflection prediction
    from dials.algorithms.spot_prediction import IndexGenerator

    # Building experimental models
    from dials.test.algorithms.refinement.setup_geometry import Extract

    master_phil = parse(
        """
  include scope dials.test.algorithms.refinement.geometry_phil
  include scope dials.test.algorithms.refinement.minimiser_phil
  """,
        process_includes=True,
    )

    overrides = """geometry.parameters.crystal.a.length.range = 10 50
  geometry.parameters.crystal.b.length.range = 10 50
  geometry.parameters.crystal.c.length.range = 10 50"""

    models = Extract(master_phil, local_overrides=overrides)

    mydetector = models.detector
    mygonio = models.goniometer
    mycrystal = models.crystal
    mybeam = models.beam

    #############################
    # Generate some reflections #
    #############################

    # All indices in a 2.0 Angstrom sphere
    resolution = 2.0
    index_generator = IndexGenerator(
        mycrystal.get_unit_cell(),
        space_group(space_group_symbols(1).hall()).type(),
        resolution,
    )
    indices = index_generator.to_array()

    # Build a mock scan for a 30 degree sequence
    sf = ScanFactory()
    myscan = sf.make_scan(
        image_range=(1, 300),
        exposure_times=0.1,
        oscillation=(0, 0.1),
        epochs=list(range(300)),
        deg=True,
    )
    sequence_range = myscan.get_oscillation_range(deg=False)
    assert sequence_range == pytest.approx((0.0, math.pi / 6.0))
    im_width = myscan.get_oscillation(deg=False)[1]
    assert im_width == pytest.approx(0.1 * math.pi / 180.0)

    # Create an ExperimentList for ScansRayPredictor
    experiments = ExperimentList()
    experiments.append(
        Experiment(
            beam=mybeam,
            detector=mydetector,
            goniometer=mygonio,
            scan=myscan,
            crystal=mycrystal,
            imageset=None,
        ))

    # Select those that are excited in a 30 degree sequence and get angles
    ray_predictor = ScansRayPredictor(experiments, sequence_range)
    obs_refs = ray_predictor(indices)

    # Set the experiment number
    obs_refs["id"] = flex.int(len(obs_refs), 0)

    # Calculate intersections
    ref_predictor = ScansExperimentsPredictor(experiments)
    obs_refs = ref_predictor(obs_refs)

    print("Total number of observations made", len(obs_refs))

    s0 = matrix.col(mybeam.get_s0())
    spindle = matrix.col(mygonio.get_rotation_axis())

    for ref in obs_refs.rows():
        # get the s1 vector of this reflection
        s1 = matrix.col(ref["s1"])

        r = s1 - s0
        r_orig = r.rotate_around_origin(spindle, -1.0, deg=True)

        # is it outside the Ewald sphere (i.e. entering)?
        test = (s0 + r_orig).length() > s0.length()
        assert ref["entering"] == test
def test_single_crystal_restraints_gradients():
    """Simple test with a single triclinic crystal restrained to a target unit cell"""

    from dxtbx.model.experiment_list import Experiment, ExperimentList

    from dials.algorithms.refinement.parameterisation.beam_parameters import (
        BeamParameterisation, )
    from dials.algorithms.refinement.parameterisation.crystal_parameters import (
        CrystalOrientationParameterisation,
        CrystalUnitCellParameterisation,
    )
    from dials.algorithms.refinement.parameterisation.detector_parameters import (
        DetectorParameterisationSinglePanel, )
    from dials.algorithms.refinement.parameterisation.prediction_parameters import (
        XYPhiPredictionParameterisation, )
    from dials.test.algorithms.refinement.setup_geometry import Extract

    overrides = """geometry.parameters.crystal.a.length.range = 10 50
  geometry.parameters.crystal.b.length.range = 10 50
  geometry.parameters.crystal.c.length.range = 10 50"""

    master_phil = parse(
        """
      include scope dials.test.algorithms.refinement.geometry_phil
      """,
        process_includes=True,
    )

    models = Extract(master_phil, overrides)

    mydetector = models.detector
    mygonio = models.goniometer
    mycrystal = models.crystal
    mybeam = models.beam

    # Build a mock scan for a 72 degree sequence
    from dxtbx.model import ScanFactory

    sf = ScanFactory()
    myscan = sf.make_scan(
        image_range=(1, 720),
        exposure_times=0.1,
        oscillation=(0, 0.1),
        epochs=list(range(720)),
        deg=True,
    )

    # Create parameterisations of these models
    det_param = DetectorParameterisationSinglePanel(mydetector)
    s0_param = BeamParameterisation(mybeam, mygonio)
    xlo_param = CrystalOrientationParameterisation(mycrystal)
    xluc_param = CrystalUnitCellParameterisation(mycrystal)

    # Create an ExperimentList
    experiments = ExperimentList()
    experiments.append(
        Experiment(
            beam=mybeam,
            detector=mydetector,
            goniometer=mygonio,
            scan=myscan,
            crystal=mycrystal,
            imageset=None,
        ))

    # Build a prediction parameterisation
    pred_param = XYPhiPredictionParameterisation(
        experiments,
        detector_parameterisations=[det_param],
        beam_parameterisations=[s0_param],
        xl_orientation_parameterisations=[xlo_param],
        xl_unit_cell_parameterisations=[xluc_param],
    )

    # Build a restraints parameterisation
    rp = RestraintsParameterisation(
        detector_parameterisations=[det_param],
        beam_parameterisations=[s0_param],
        xl_orientation_parameterisations=[xlo_param],
        xl_unit_cell_parameterisations=[xluc_param],
    )

    # make a unit cell target
    sigma = 1.0
    uc = mycrystal.get_unit_cell().parameters()
    target_uc = [random.gauss(e, sigma) for e in uc]

    rp.add_restraints_to_target_xl_unit_cell(experiment_id=0,
                                             values=target_uc,
                                             sigma=[sigma] * 6)

    # get analytical values and gradients
    vals, grads, weights = rp.get_residuals_gradients_and_weights()
    assert len(vals) == rp.num_residuals

    # get finite difference gradients
    p_vals = pred_param.get_param_vals()
    deltas = [1.0e-7] * len(p_vals)

    fd_grad = []

    for i, delta in enumerate(deltas):
        val = p_vals[i]

        p_vals[i] -= delta / 2.0
        pred_param.set_param_vals(p_vals)

        rev_state, foo, bar = rp.get_residuals_gradients_and_weights()
        rev_state = flex.double(rev_state)

        p_vals[i] += delta
        pred_param.set_param_vals(p_vals)

        fwd_state, foo, bar = rp.get_residuals_gradients_and_weights()
        fwd_state = flex.double(fwd_state)

        p_vals[i] = val

        fd = (fwd_state - rev_state) / delta
        fd_grad.append(fd)

    # for comparison, fd_grad is a list of flex.doubles, each of which corresponds
    # to a column of the sparse matrix grads.
    for i, fd in enumerate(fd_grad):
        # extract dense column from the sparse matrix
        an = grads.col(i).as_dense_vector()

        assert an == pytest.approx(fd, abs=1e-5)