def from_dict(d, t=None): ''' Convert the dictionary to a scan model Params: d The dictionary of parameters t The template dictionary to use Returns: The scan model ''' from dxtbx.model import Scan from scitbx.array_family import flex # import dependency # If None, return None if d == None: if t == None: return None else: return from_dict(t, None) elif t != None: d = dict(t.items() + d.items()) if not isinstance(d['exposure_time'], list): d['exposure_time'] = [d['exposure_time']] d.setdefault('batch_offset', 0) # backwards compatibility 20180205 if 'valid_image_ranges' not in d: d['valid_image_ranges'] = {} # backwards compatibility 20181113 # Create the model from the dictionary return Scan.from_dict(d)
def from_dict(d, t=None): ''' Convert the dictionary to a scan model Params: d The dictionary of parameters t The template dictionary to use Returns: The scan model ''' from dxtbx.model import Scan from scitbx.array_family import flex # import dependency # If None, return None if d == None: if t == None: return None else: return from_dict(t, None) elif t != None: d = dict(t.items() + d.items()) if not isinstance(d['exposure_time'], list): d['exposure_time'] = [d['exposure_time']] # Create the model from the dictionary return Scan.from_dict(d)
def from_dict(d, t=None): """Convert the dictionary to a scan model Params: d The dictionary of parameters t The template dictionary to use Returns: The scan model """ if d is None and t is None: return None joint = t.copy() if t else {} joint.update(d) if not isinstance(joint["exposure_time"], list): joint["exposure_time"] = [joint["exposure_time"]] joint.setdefault("batch_offset", 0) # backwards compatibility 20180205 joint.setdefault("valid_image_ranges", {}) # backwards compatibility 20181113 # Create the model from the joint dictionary return Scan.from_dict(joint)