pixel_res=256, raw=True, cond=False, half_image_size=False, kloss_dataset=True, # true for mit push ) model_config = PlaNetBaselineFilterConfig( latent_dim=hy_config.latent_dim, latent_obs_dim=32, hidden_units=64, ctrl_dim=6, dataset=dataset_config, overshoot=(OverShoot.LATENT, 2), ) exp_config = ExpConfig( name=f"oo_planet_push_{model_config.overshoot[1]}" + f"{datetime.datetime.now().strftime('%a-%H-%M-%S')}", model=model_config, ramp_iters=200, batch_size=hy_config.batch_size, epochs=hy_config.epochs, log_iterations_simple=10, log_iterations_images=100, base_learning_rate=hy_config.learning_rate, learning_rate_function=lr5, gradient_clip_max_norm=100, ) train(exp_config)
dkl_anneal_iter=1000, alpha=1.0, beta=2.0, atol=1e-9, # default: 1e-9 rtol=1e-7, # default: 1e-7 z_pred=False, ) model_config = KVAEConfig( latent_dim=_model_config.latent_dim, ctrl_dim=_model_config.ctrl_dim, dataset=dataset_config, latent_obs_dim=2, kf_estimator_config=_model_config, ) # experiment settings exp_config = ExpConfig( name="dt_ekf_kvae_pend_img_nop", model=model_config, ramp_iters=(_model_config.ramp_iters if hasattr(_model_config, "ramp_iters") else 100), batch_size=hy_config.batch_size, epochs=hy_config.epochs, log_iterations_simple=10, log_iterations_images=model_config.kf_estimator_config.ramp_iters, base_learning_rate=hy_config.learning_rate, learning_rate_function=lr2, gradient_clip_max_norm=None, ) train(exp_config)
dyn_nonlinearity=nn.Softplus(beta=2, threshold=20), obs_hidden_units=64, obs_layers=3, obs_nonlinearity=nn.Softplus(beta=2, threshold=20), is_continuous=False, ramp_iters=200, burn_in=100, dkl_anneal_iter=1000, num_submodels=100, alpha=0.5, beta=1.0, atol=1e-9, # default: 1e-9 rtol=1e-7, # default: 1e-7 z_pred=True, ) exp_config = ExpConfig( name="le_ekf_push", model=model_config, ramp_iters=(model_config.ramp_iters if hasattr(model_config, "ramp_iters") else 100), batch_size=hy_config.batch_size, epochs=hy_config.epochs, log_iterations_simple=10, log_iterations_images=100, base_learning_rate=hy_config.learning_rate, learning_rate_function=lr5, gradient_clip_max_norm=100, ) train(exp_config)
dataset_config = ImageDynamicDatasetConfig( traj_len=pend_fixed.traj_len, num_trajectories=10000, num_viz_trajectories=pend_fixed.num_viz_trajectories, system=pend_fixed, policy=None, ) model_config = PlaNetBaselineFilterConfig( latent_dim=hy_config.latent_dim, latent_obs_dim=8, hidden_units=64, ctrl_dim=1, dataset=dataset_config, ) # experiment settings exp_config = ExpConfig( name="planet_pend_img_try_reproduce", model=model_config, ramp_iters=100, batch_size=hy_config.batch_size, epochs=hy_config.epochs, log_iterations_simple=10, log_iterations_images=100, base_learning_rate=hy_config.learning_rate, learning_rate_function=lr2, gradient_clip_max_norm=500, ) train(exp_config)
traj_len=50, num_viz_trajectories=20, pixel_res=256, raw=True, cond=False, half_image_size=False, kloss_dataset=True, # true for mit push ) model_config = GSSMBaselineConfig( latent_dim=hy_config.latent_dim, latent_obs_dim=16, hidden_units=64, ctrl_dim=6, dataset=dataset_config, ) exp_config = ExpConfig( name="gssm_push", model=model_config, ramp_iters=200, batch_size=hy_config.batch_size, epochs=hy_config.epochs, log_iterations_simple=10, log_iterations_images=100, base_learning_rate=hy_config.learning_rate, learning_rate_function=lr5, gradient_clip_max_norm=500, ) train(exp_config)
dataset=dataset_config, dyn_hidden_units=32, dyn_layers=3, dyn_nonlinearity=nn.Softplus(beta=2, threshold=20), obs_hidden_units=32, obs_layers=3, obs_nonlinearity=nn.Softplus(beta=2, threshold=20), is_continuous=False, ramp_iters=100, burn_in=100, dkl_anneal_iter=1000, alpha=0.5, beta=1.0, atol=1e-9, # default: 1e-9 rtol=1e-7, # default: 1e-7 z_pred=False, ) # experiment settings exp_config = ExpConfig( model=model_config, ramp_iters=model_config.ramp_iters, batch_size=hy_config.batch_size, epochs=hy_config.epochs, log_iterations_simple=10, log_iterations_images=model_config.ramp_iters, base_learning_rate=hy_config.learning_rate, learning_rate_function=lr1, ) train(exp_config) # train the model