Exemple #1
0
def test_neff():
    # test of neff functionality
    ndim = 2
    rstate = get_rstate()
    sampler = dynesty.NestedSampler(loglike,
                                    prior_transform,
                                    ndim,
                                    nlive=nlive,
                                    rstate=rstate)
    assert sampler.n_effective == 0
    sampler.run_nested(print_progress=printing)
    assert sampler.n_effective > 10

    sampler = dynesty.DynamicNestedSampler(loglike,
                                           prior_transform,
                                           ndim,
                                           nlive=nlive,
                                           rstate=rstate)
    assert sampler.n_effective == 0
    sampler.run_nested(dlogz_init=1, n_effective=1000, print_progress=printing)
    assert sampler.n_effective > 1000
    sampler = dynesty.DynamicNestedSampler(loglike,
                                           prior_transform,
                                           ndim,
                                           nlive=nlive,
                                           rstate=rstate)
    sampler.run_nested(dlogz_init=1,
                       n_effective=10000,
                       print_progress=printing)
    assert sampler.n_effective > 10000
    def __init__(self,
                 likelihood_module,
                 prior_type='uniform',
                 prior_means=None,
                 prior_sigmas=None,
                 width_scale=1,
                 sigma_scale=1,
                 bound='multi',
                 sample='auto',
                 use_mpi=False,
                 use_pool={}):
        """
        :param likelihood_module: likelihood_module like in likelihood.py (should be callable)
        :param prior_type: 'uniform' of 'gaussian', for converting the unit hypercube to param cube
        :param prior_means: if prior_type is 'gaussian', mean for each param
        :param prior_sigmas: if prior_type is 'gaussian', std dev for each param
        :param width_scale: scale the widths of the parameters space by this factor
        :param sigma_scale: if prior_type is 'gaussian', scale the gaussian sigma by this factor
        :param bound: specific to Dynesty, see https://dynesty.readthedocs.io
        :param sample: specific to Dynesty, see https://dynesty.readthedocs.io
        :param use_mpi: Use MPI computing if `True`
        :param use_pool: specific to Dynesty, see https://dynesty.readthedocs.io
        """
        super(DynestySampler,
              self).__init__(likelihood_module, prior_type, prior_means,
                             prior_sigmas, width_scale, sigma_scale)

        # create the Dynesty sampler
        if use_mpi:
            from schwimmbad import MPIPool
            import sys

            pool = MPIPool(use_dill=True)
            if not pool.is_master():
                pool.wait()
                sys.exit(0)

            self._sampler = dynesty.DynamicNestedSampler(self.log_likelihood,
                                                         self.prior,
                                                         self.n_dims,
                                                         bound=bound,
                                                         sample=sample,
                                                         pool=pool,
                                                         use_pool=use_pool)
        else:
            self._sampler = dynesty.DynamicNestedSampler(self.log_likelihood,
                                                         self.prior,
                                                         self.n_dims,
                                                         bound=bound,
                                                         sample=sample)
        self._has_warned = False
Exemple #3
0
    def __init__(self, model, nlive, nprocesses=1,
                 loglikelihood_function=None, use_mpi=False, run_kwds=None,
                 **kwargs):
        self.model = model
        log_likelihood_call, prior_call = setup_calls(
            model,
            nprocesses=nprocesses,
            loglikelihood_function=loglikelihood_function)
        # Set up the pool
        pool = choose_pool(mpi=use_mpi, processes=nprocesses)
        if pool is not None:
            pool.size = nprocesses

        self.run_kwds = {} if run_kwds is None else run_kwds
        self.nlive = nlive
        self.names = model.sampling_params
        self.ndim = len(model.sampling_params)
        self.checkpoint_file = None
        if self.nlive < 0:
            # Interpret a negative input value for the number of live points
            # (which is clearly an invalid input in all senses)
            # as the desire to dynamically determine that number
            self._sampler = dynesty.DynamicNestedSampler(log_likelihood_call,
                                                         prior_call, self.ndim,
                                                         pool=pool, **kwargs)
        else:
            self._sampler = dynesty.NestedSampler(log_likelihood_call,
                                                  prior_call, self.ndim,
                                                  nlive=self.nlive,
                                                  pool=pool, **kwargs)
Exemple #4
0
def test_results(dyn):
    # test of various results interfaces functionality
    ndim = 2
    rstate = get_rstate()
    if dyn:
        sampler = dynesty.DynamicNestedSampler(loglike,
                                               prior_transform,
                                               ndim,
                                               nlive=nlive,
                                               rstate=rstate)
    else:
        sampler = dynesty.NestedSampler(loglike,
                                        prior_transform,
                                        ndim,
                                        nlive=nlive,
                                        rstate=rstate)
    sampler.run_nested(print_progress=printing)
    res = sampler.results
    for k in res.keys():
        pass
    for k, v in res.items():
        pass
    for k, v in res.asdict().items():
        pass
    print(res)
    print(str(res))
    print('logl' in res)
    res1 = res.copy()
    # check it's pickleable
    S = pickle.dumps(res)
    res = pickle.loads(S)
Exemple #5
0
def test_periodic():
    # hard test of dynamic sampler with high dlogz_init and small number
    # of live points
    logz_true = np.log(np.sqrt(2 * np.pi) * erf(win / np.sqrt(2)) / (2 * win))
    thresh = 5
    ndim = 2
    rstate = get_rstate()
    sampler = dynesty.DynamicNestedSampler(loglike,
                                           prior_transform,
                                           ndim,
                                           nlive=nlive,
                                           periodic=[0],
                                           rstate=rstate)
    sampler.run_nested(dlogz_init=1, print_progress=printing)
    assert (np.abs(sampler.results.logz[-1] - logz_true) <
            thresh * sampler.results.logzerr[-1])
    sampler = dynesty.NestedSampler(loglike,
                                    prior_transform,
                                    ndim,
                                    nlive=nlive,
                                    periodic=[0],
                                    rstate=rstate)
    sampler.run_nested(dlogz=1, print_progress=printing)
    assert (np.abs(sampler.results.logz[-1] - logz_true) <
            thresh * sampler.results.logzerr[-1])
Exemple #6
0
 def __init__(self, loglikelihood,
              prior_transform, ndim,
              sample='auto', bound='multi',
              n_cpu=None, n_thread=None):
     
     if n_cpu is None:
         n_cpu = mp.cpu_count()
         
     if n_thread is not None:
         n_thread = max(n_thread, n_cpu-1)
     
     if n_cpu > 1:
         self.open_pool(n_cpu)
         self.use_pool = {'update_bound': False}
     else:
         self.pool = None
         self.use_pool = None
             
     self.prior_tf = prior_transform
     self.loglike = loglikelihood
     self.ndim = ndim
     
     dsampler = dynesty.DynamicNestedSampler(self.loglike,
                                             self.prior_tf,
                                             self.ndim,
                                             sample=sample,
                                             bound=bound,
                                             pool=self.pool,
                                             queue_size=n_thread,
                                             use_pool=self.use_pool)
     self.dsampler = dsampler
Exemple #7
0
def test_pickle(dynamic, with_pool):
    # test of pickling functionality
    ndim = 2
    rstate = get_rstate()

    if with_pool:
        kw = dict(pool=Pool(2), queue_size=100)
    else:
        kw = {}

    if dynamic:
        sampler = dynesty.DynamicNestedSampler(loglike,
                                               prior_transform,
                                               ndim,
                                               nlive=nlive,
                                               rstate=rstate,
                                               **kw)
    else:
        sampler = dynesty.NestedSampler(loglike,
                                        prior_transform,
                                        ndim,
                                        nlive=nlive,
                                        rstate=rstate,
                                        **kw)
    sampler.run_nested(print_progress=printing, maxiter=100)
    # i do it twice as there were issues previously
    # with incorrect pool restoring
    S = pickle.dumps(sampler)
    sampler = pickle.loads(S)
    S = pickle.dumps(sampler)
    sampler = pickle.loads(S)
    sampler.run_nested(print_progress=printing, maxiter=100)
    if with_pool:
        kw['pool'].close()
        kw['pool'].join()
Exemple #8
0
def test_periodic(sampler, dynamic):
    # hard test of dynamic sampler with high dlogz_init and small number
    # of live points
    logz_true = np.log(np.sqrt(2 * np.pi) * erf(win / np.sqrt(2)) / (2 * win))
    thresh = 8
    # This is set up to higher level
    # becasue of failures at ~5ssigma level
    # this needs to be investigated
    rstate = get_rstate()
    if dynamic:
        dns = dynesty.DynamicNestedSampler(loglike,
                                           prior_transform,
                                           ndim,
                                           nlive=nlive,
                                           periodic=[0],
                                           rstate=rstate,
                                           sample=sampler)
        dns.run_nested(dlogz_init=1, print_progress=printing)
    else:
        dns = dynesty.NestedSampler(loglike,
                                    prior_transform,
                                    ndim,
                                    nlive=nlive,
                                    periodic=[0],
                                    rstate=rstate,
                                    sample=sampler)
        dns.run_nested(dlogz=1, print_progress=printing)
    assert (np.abs(dns.results.logz[-1] - logz_true) <
            thresh * dns.results.logzerr[-1])
Exemple #9
0
def test_periodic(sampler, dynamic):
    # hard test of dynamic sampler with high dlogz_init and small number
    # of live points
    logz_true = np.log(np.sqrt(2 * np.pi) * erf(win / np.sqrt(2)) / (2 * win))
    thresh = 5
    rstate = get_rstate()
    if dynamic:
        dns = dynesty.DynamicNestedSampler(loglike,
                                           prior_transform,
                                           ndim,
                                           nlive=nlive,
                                           sample=sampler,
                                           reflective=[0],
                                           rstate=rstate)
    else:
        dns = dynesty.NestedSampler(loglike,
                                    prior_transform,
                                    ndim,
                                    nlive=nlive,
                                    sample=sampler,
                                    reflective=[0],
                                    rstate=rstate)
    dns.run_nested(print_progress=printing)
    assert (np.abs(dns.results.logz[-1] - logz_true) <
            thresh * dns.results.logzerr[-1])
Exemple #10
0
 def run_dynamic_nested(self,
                        evidence=False,
                        posterior=False,
                        nlive=250,
                        sample='slice'):
     self.sampler = dynesty.DynamicNestedSampler(
         self.model.lnlikefunc,
         self.model.priors.transform_prior,
         ndim=self.ndim,
         bound='multi',
         sample=sample,
         nlive=nlive)
     if evidence and posterior:
         print('Both, really? Going to default')
         self.sampler.run_nested()
     elif evidence:
         # evidence focused dynamic run
         self.sampler.run_nested(wt_kwargs={'pfrac': 0.0},
                                 stop_kwargs={'pfrac': 0.0})
     elif posterior:
         # evidence focused dynamic run
         self.sampler.run_nested(wt_kwargs={'pfrac': 1.0})
     else:
         # Default behavior, 80/20 weight split and 100% posterior.
         self.sampler.run_nested()
Exemple #11
0
def test_error():
    rstate = get_rstate()
    with pytest.raises(ValueError):
        dynesty.DynamicNestedSampler(loglike,
                                     prior_transform,
                                     ndim,
                                     nlive=nlive,
                                     reflective=[22],
                                     rstate=rstate)
Exemple #12
0
def test_dynamic():
    # check dynamic nested sampling behavior
    logz_tol = 1
    dsampler = dynesty.DynamicNestedSampler(loglikelihood_gau,
                                            prior_transform_gau,
                                            ntotdim,
                                            ncdim=ndim_gau)
    dsampler.run_nested(print_progress=printing)
    check_results_gau(dsampler.results, logz_tol)
Exemple #13
0
    def fit(self,
            log_likelihood,
            start,
            num_dim,
            prior_transform,
            save_dims=None,
            uid=None):

        import dynesty

        filename = self.get_filename(uid)
        if os.path.exists(filename):
            self.logger.info("Not sampling, returning result from file.")
            return self.load_file(filename)
        self.logger.info("Sampling posterior now")

        if save_dims is None:
            save_dims = num_dim
        self.logger.debug("Fitting framework with %d dimensions" % num_dim)
        self.logger.info("Using dynesty Sampler")
        if self.dynamic:
            sampler = dynesty.DynamicNestedSampler(log_likelihood,
                                                   prior_transform, num_dim)
            sampler.run_nested(maxiter=self.max_iter,
                               print_progress=False,
                               nlive_init=self.nlive,
                               nlive_batch=100,
                               maxbatch=10)
        else:
            sampler = dynesty.NestedSampler(log_likelihood,
                                            prior_transform,
                                            num_dim,
                                            nlive=self.nlive)
            sampler.run_nested(maxiter=self.max_iter, print_progress=False)

        self.logger.debug("Fit finished")

        dresults = sampler.results
        logz = dresults["logz"]
        chain = dresults["samples"]
        weights = np.exp(dresults["logwt"] - dresults["logz"][-1])
        max_weight = weights.max()
        trim = max_weight / 1e5
        mask = weights > trim
        likelihood = dresults["logl"]
        self._save(chain[mask, :], weights[mask], likelihood[mask], filename,
                   logz[mask], save_dims)
        return {
            "chain": chain[mask, :],
            "weights": weights[mask],
            "posterior": likelihood[mask],
            "evidence": logz
        }
Exemple #14
0
def test_stop_nmc():
    # test stopping relying in n_mc
    ndim = 2
    rstate = get_rstate()
    sampler = dynesty.DynamicNestedSampler(loglike,
                                           prior_transform,
                                           ndim,
                                           nlive=nlive,
                                           rstate=rstate)
    sampler.run_nested(dlogz_init=1,
                       n_effective=None,
                       stop_kwargs=dict(n_mc=25),
                       print_progress=printing)
Exemple #15
0
def Model_2_sampler(prior_xform2,data1,data2,bins_,label):
    x,n1,n2,dn1,dn2 = bin_data(data1,data2,bins_,label)
    print("running the nested sampler... this might take from minutes to hours...")
    dsampler = dynesty.DynamicNestedSampler(logLjoint2_skew, prior_xform2, ndim=16,
                                            logl_args=(n1, n2, x),
                                            nlive=2000,
                                            bound='multi',
                                            sample='auto')

    dsampler.run_nested()
    dres2 = dsampler.results
    
    with open('sampler_results_model2_'+label, 'wb') as dres2_file:
        pickle.dump(dres2, dres2_file)
    print("sampler output saved as pickle file 'sampler_results_model2_"+label+"'")
Exemple #16
0
    def _fit_impl_impl(self, objective, parameters):
        ndim = 3

        sampler = dynesty.DynamicNestedSampler(_log_likelihood_wrapper,
                                               _prior_tansform_wrapper,
                                               ndim,
                                               logl_args=(objective,
                                                          parameters),
                                               ptform_args=(),
                                               **self._options_constructor)

        print(self._options_run_nested)
        result = sampler.run_nested(**self._options_run_nested)

        return result
Exemple #17
0
def test_oldstop():
    # test of old stopping function functionality
    ndim = 2
    rstate = get_rstate()
    import dynesty.utils as dyutil
    stopfn = dyutil.old_stopping_function
    sampler = dynesty.DynamicNestedSampler(loglike,
                                           prior_transform,
                                           ndim,
                                           nlive=nlive,
                                           rstate=rstate)
    sampler.run_nested(dlogz_init=1,
                       n_effective=None,
                       stop_function=stopfn,
                       print_progress=printing)
Exemple #18
0
def test_pool_dynamic():
    # test pool in dynamic mode
    # here for speed I do a gaussian
    rstate = get_rstate()
    with mp.Pool(2) as pool:
        sampler = dynesty.DynamicNestedSampler(loglike_gau,
                                               prior_transform_gau,
                                               ndim,
                                               nlive=nlive,
                                               pool=pool,
                                               queue_size=100,
                                               rstate=rstate)
        sampler.run_nested(dlogz_init=1, print_progress=printing)
        assert (abs(LOGZ_TRUTH_GAU - sampler.results.logz[-1]) <
                5. * sampler.results.logzerr[-1])
def test_maxcall():
    # hard test of dynamic sampler with high dlogz_init and small number
    # of live points
    ndim = 2
    sampler = dynesty.NestedSampler(loglike,
                                    prior_transform,
                                    ndim,
                                    nlive=nlive)
    sampler.run_nested(dlogz=1, maxcall=1000)

    sampler = dynesty.DynamicNestedSampler(loglike,
                                           prior_transform,
                                           ndim,
                                           nlive=nlive)
    sampler.run_nested(dlogz_init=1, maxcall=1000)
def test_dyn():
    # hard test of dynamic sampler with high dlogz_init and small number
    # of live points
    ndim = 2
    bound = 'multi'
    sampler = dynesty.DynamicNestedSampler(loglike_egg,
                                        prior_transform_egg,
                                        ndim,
                                        nlive=nlive,
                                        bound=bound,
                                        sample='unif')
    sampler.run_nested(dlogz_init=1, print_progress=printing)
    logz_truth = 235.856
    assert (abs(logz_truth - sampler.results.logz[-1]) <
                5. * sampler.results.logzerr[-1])
Exemple #21
0
def fit_e_disk2():
    pdfs_weights_file = 'all_pdfs_weights.pkl'
    membership_file = 'membership_probs.fits'

    tmp = load_pdfs_weights_pickle(pdfs_weights_file)

    pdf_dict = tmp[0]
    wgt_dict = tmp[1]
    d1_dict = tmp[2]
    d2_dict = tmp[3]
    grp_dict = tmp[4]

    prob_mem = Table.read(membership_file)

    # Fit only stars with non-zero membership probability.
    p_thresh = 0.1
    s_d2 = np.where(prob_mem['p_d2'] > p_thresh)[0]
    e_solver = Eccentricity_Solver(pdf_dict['e'][s_d2, :],
                                   wgt_dict['d2'][s_d2, :],
                                   prob_mem['name'][s_d2])
    e_solver.priors['alpha'] = make_gen(0, 50)
    e_solver.priors['beta'] = make_gen(0, 30)

    t0 = time.time()
    # n_cpu = 4
    # pool = Pool(n_cpu)
    sampler = dynesty.DynamicNestedSampler(e_solver.LogLikelihood,
                                           e_solver.Prior,
                                           ndim=e_solver.n_dims,
                                           bound='multi',
                                           sample='unif')

    sampler.run_nested(print_progress=True,
                       dlogz_init=0.05,
                       nlive_init=1000,
                       nlive_batch=500,
                       maxiter_init=20000,
                       maxiter_batch=2000,
                       maxbatch=10)

    e_solver.sampler = sampler

    t1 = time.time()
    print('Runtime: ', t1 - t0)

    e_solver.save('dnest_ecc_d2.pkl')

    return
Exemple #22
0
def test_pool2():
    # test pool
    ndim = 2
    pool = mp.Pool(2)
    sampler = dynesty.DynamicNestedSampler(loglike_egg,
                                           prior_transform_egg,
                                           ndim,
                                           nlive=nlive,
                                           bound='multi',
                                           sample='unif',
                                           pool=pool,
                                           queue_size=2)
    sampler.run_nested(dlogz_init=0.1, print_progress=printing)
    logz_truth = 235.856
    assert (abs(logz_truth - sampler.results.logz[-1]) <
            5. * sampler.results.logzerr[-1])
def test_printing():
    # hard test of dynamic sampler with high dlogz_init and small number
    # of live points
    ndim = 2
    sampler = dynesty.DynamicNestedSampler(
        loglike,
        prior_transform,
        ndim,
        nlive=nlive,
    )
    sampler.run_nested(dlogz_init=1, print_progress=printing)
    sampler = dynesty.NestedSampler(loglike,
                                    prior_transform,
                                    ndim,
                                    nlive=nlive)
    sampler.run_nested(dlogz=1, print_progress=printing)
Exemple #24
0
def test_dyn():
    # hard test of dynamic sampler with high dlogz_init and small number
    # of live points
    ndim = 2
    THRESHOLD = 5  # in sigmas
    rstate = get_rstate()
    # this is expected to use unif sampler and multi bound
    sampler = dynesty.DynamicNestedSampler(loglike_egg,
                                           prior_transform_egg,
                                           ndim,
                                           nlive=nlive,
                                           rstate=rstate)
    sampler.run_nested(dlogz_init=1, print_progress=printing)
    assert (abs(LOGZ_TRUTH - sampler.results.logz[-1]) <
            THRESHOLD * sampler.results.logzerr[-1])
    print(sampler.citations)
Exemple #25
0
def Run_Dynamic_Nested_Fitting(loglikelihood,
                               prior_transform, ndim,
                               nlive_init=100, sample='auto', 
                               nlive_batch=50, maxbatch=2,
                               pfrac=0.8, n_cpu=None,
                               print_progress=True):
    
    """ Run Fitting as a Function.
    
    Parameters
    ----------
    loglikelihood: function
        log likelihood function
    prior_transform: function
        priot transorm function
    ndim: int
        number of dimension
        
    """
    
    print("Run Nested Fitting for the image... #a of params: %d"%ndim)
    
    start = time.time()
    
    if n_cpu is None:
        n_cpu = mp.cpu_count()-1
        
    with mp.Pool(processes=n_cpu) as pool:
        print("Opening pool: # of CPU used: %d"%(n_cpu))
        pool.size = n_cpu

        dlogz = 1e-3 * (nlive_init - 1) + 0.01

        pdsampler = dynesty.DynamicNestedSampler(loglikelihood, prior_transform, ndim,
                                                 sample=sample, pool=pool,
                                                 use_pool={'update_bound': False})
        pdsampler.run_nested(nlive_init=nlive_init, 
                             nlive_batch=nlive_batch, 
                             maxbatch=maxbatch,
                             print_progress=print_progress, 
                             dlogz_init=dlogz, 
                             wt_kwargs={'pfrac': pfrac})
        
    end = time.time()
    print("Finish Fitting! Total time elapsed: %.3gs"%(end-start))
    
    return pdsampler
Exemple #26
0
    def __init__(self,
                 container,
                 sample='auto',
                 bound='multi',
                 n_cpu=None,
                 n_thread=None,
                 run=True,
                 results=None):
        """ A class for runnning the sampling and plotting results """

        # False if a previous run is read
        self.run = run

        self.container = container
        self.image = container.image
        self.ndim = container.ndim
        self.labels = container.labels

        if run:
            if n_cpu is None:
                n_cpu = min(mp.cpu_count() - 1, 10)

            if n_thread is not None:
                n_thread = max(n_thread, n_cpu - 1)

            if n_cpu > 1:
                self.open_pool(n_cpu)
                self.use_pool = {'update_bound': False}
            else:
                self.pool = None
                self.use_pool = None

            self.prior_tf = container.prior_transform
            self.loglike = container.loglikelihood

            dsampler = dynesty.DynamicNestedSampler(self.loglike,
                                                    self.prior_tf,
                                                    self.ndim,
                                                    sample=sample,
                                                    bound=bound,
                                                    pool=self.pool,
                                                    queue_size=n_thread,
                                                    use_pool=self.use_pool)
            self.dsampler = dsampler

        else:
            self._results = results  # use existed results
Exemple #27
0
def test_maxcall():
    # test of maxcall functionality
    ndim = 2
    rstate = get_rstate()
    sampler = dynesty.NestedSampler(loglike,
                                    prior_transform,
                                    ndim,
                                    nlive=nlive,
                                    rstate=rstate)
    sampler.run_nested(dlogz=1, maxcall=1000, print_progress=printing)

    sampler = dynesty.DynamicNestedSampler(loglike,
                                           prior_transform,
                                           ndim,
                                           nlive=nlive,
                                           rstate=rstate)
    sampler.run_nested(dlogz_init=1, maxcall=1000, print_progress=printing)
Exemple #28
0
def test_inf():
    # Test of logl that returns -inf
    ndim = 2
    rstate = get_rstate()
    sampler = dynesty.NestedSampler(loglike_inf,
                                    prior_transform,
                                    ndim,
                                    nlive=nlive,
                                    rstate=rstate)
    sampler.run_nested(print_progress=printing)

    sampler = dynesty.DynamicNestedSampler(loglike_inf,
                                           prior_transform,
                                           ndim,
                                           nlive=nlive,
                                           rstate=rstate)
    sampler.run_nested(dlogz_init=1, print_progress=printing)
Exemple #29
0
    def __init__(self, likelihood, parameters, **kwargs):

        prop_default = {
            "nlive": 1000,
            "bound": "single",
            "which_sampler": "dynamic",
            "run_kwargs": {},
        }

        self.likelihood = likelihood

        for prop, default in prop_default.items():
            setattr(self, prop, kwargs.get(prop, default))

        for prop, default in prop_default.items():
            kwargs[prop] = kwargs.get(prop, default)

        super().__init__(parameters, **kwargs)

        current_point_dict = self.get_current_point()
        self.current_point = np.array(
            [current_point_dict[key] for key in self.key_order])
        self.injection = self.current_point.copy()

        if self.which_sampler == "dynamic":
            print("Running dynamic sampler.")
            self.sampler = dynesty.DynamicNestedSampler(
                loglike,
                ptform,
                len(self.test_inds),
                logl_args=(self.likelihood, ),
                ptform_args=(self.sampling_values, self.key_order,
                             self.test_inds),
                **kwargs)
        elif self.which_sampler == "static":
            print("Running static sampler.")
            self.sampler = dynesty.NestedSampler(
                loglike,
                ptform,
                len(self.test_inds),
                logl_args=(self.likelihood, ),
                ptform_args=(self.sampling_values, self.key_order,
                             self.test_inds),
                **kwargs)
        else:
            raise ValueError("which_sampler must be dynamic or static.")
Exemple #30
0
def test_usepool(func):
    # test all the use_pool options, toggle them one by one
    rstate = get_rstate()
    use_pool = {}
    for k in POOL_KW:
        use_pool[k] = False
    use_pool[func] = True
    with mp.Pool(2) as pool:
        sampler = dynesty.DynamicNestedSampler(loglike_gau,
                                               prior_transform_gau,
                                               ndim,
                                               nlive=nlive,
                                               rstate=rstate,
                                               use_pool=use_pool,
                                               pool=pool,
                                               queue_size=100)
        sampler.run_nested(maxiter=10000, print_progress=printing)