Exemple #1
0
def test_load_task(
    printer: Callable,
    client: cx.Client,
    api: str,
    load_config: Dict[str, Union[int, float]],
    deploy_timeout: int = None,
    retry_attempts: int = 0,
    poll_sleep_seconds: int = 1,
    api_config_name: str = "cortex.yaml",
):

    jobs = load_config["jobs"]
    concurrency = load_config["concurrency"]
    submit_timeout = load_config["submit_timeout"]
    workload_timeout = load_config["workload_timeout"]

    api_dir = TEST_APIS_DIR / api
    with open(str(api_dir / api_config_name)) as f:
        api_specs = yaml.safe_load(f)
    assert len(api_specs) == 1

    api_name = api_specs[0]["name"]
    client.create_api(api_spec=api_specs[0], project_dir=api_dir)

    request_stopper = td.Event()
    map_stopper = td.Event()
    try:
        assert endpoint_ready(
            client=client, api_name=api_name,
            timeout=deploy_timeout), f"api {api_name} not ready"

        # give the operator time to start
        time.sleep(1 * retry_attempts)

        # submit jobs
        printer(f"submitting {jobs} jobs concurrently")
        job_specs = []
        threads_futures = request_tasks_concurrently(client, api_name,
                                                     request_stopper,
                                                     concurrency, jobs,
                                                     job_specs)

        assert wait_on_event(
            request_stopper, submit_timeout
        ), f"{jobs} jobs couldn't be submitted in {submit_timeout}s"
        check_futures_healthy(threads_futures)
        wait_on_futures(threads_futures)

        printer("waiting on the jobs")
        job_ids = [job_spec.json()["job_id"] for job_spec in job_specs]
        retrieve_results_concurrently(
            client,
            api_name,
            concurrency,
            map_stopper,
            job_ids,
            poll_sleep_seconds=poll_sleep_seconds,
            timeout=workload_timeout,
        )

    except:
        # best effort
        try:
            api_info = client.get_api(api_name)

            # only get the last 10 job statuses
            if "task_job_statuses" in api_info and len(
                    api_info["task_job_statuses"]) > 10:
                api_info["task_job_statuses"] = api_info["task_job_statuses"][
                    -10:]

            printer(json.dumps(api_info, indent=2))
        except:
            pass
        raise

    finally:
        map_stopper.set()
        delete_apis(client, [api_name])
Exemple #2
0
def test_load_async(
    printer: Callable,
    client: cx.Client,
    api: str,
    load_config: Dict[str, Union[int, float]],
    deploy_timeout: int = None,
    poll_sleep_seconds: int = 1,
    api_config_name: str = "cortex.yaml",
):

    total_requests = load_config["total_requests"]
    desired_replicas = load_config["desired_replicas"]
    concurrency = load_config["concurrency"]
    submit_timeout = load_config["submit_timeout"]
    workload_timeout = load_config["workload_timeout"]

    api_dir = TEST_APIS_DIR / api
    with open(str(api_dir / api_config_name)) as f:
        api_specs = yaml.safe_load(f)

    assert len(api_specs) == 1
    api_specs[0]["autoscaling"] = {
        "min_replicas": desired_replicas,
        "max_replicas": desired_replicas,
    }
    api_name = api_specs[0]["name"]
    client.create_api(api_spec=api_specs[0], project_dir=api_dir)

    request_stopper = td.Event()
    map_stopper = td.Event()
    responses: List[Dict[str, Any]] = []
    try:
        printer(f"getting {desired_replicas} replicas ready")
        assert apis_ready(client=client,
                          api_names=[api_name],
                          timeout=deploy_timeout), f"api {api_name} not ready"

        with open(str(api_dir / "sample.json")) as f:
            payload = json.load(f)

        printer("start making prediction requests concurrently")
        threads_futures = make_requests_concurrently(
            client,
            api_name,
            concurrency,
            request_stopper,
            responses=responses,
            max_total_requests=total_requests,
            payload=payload,
        )
        assert wait_on_event(
            request_stopper, submit_timeout
        ), f"{total_requests} couldn't be submitted in {submit_timeout}s"
        check_futures_healthy(threads_futures)
        wait_on_futures(threads_futures)

        printer("finished making prediction requests")
        assert (
            len(responses) == total_requests
        ), f"the submitted number of requests doesn't match the returned number of responses"

        job_ids = []
        for response in responses:
            response_json = response.json()
            assert "id" in response_json
            job_ids.append(response_json["id"])

        # assert the results
        printer("start retrieving the async results concurrently")
        results = []
        retrieve_results_concurrently(
            client,
            api_name,
            concurrency,
            map_stopper,
            job_ids,
            results,
            poll_sleep_seconds,
            workload_timeout,
        )
        for request_id, json_result in results:
            # validate keys are in the result json response
            assert (
                "id" in json_result
            ), f"id key was not present in result response (response: {json_result})"
            assert (
                "result" in json_result
            ), f"result key was not present in result response (response: {json_result})"
            assert (
                "timestamp" in json_result
            ), f"timestamp key was not present in result response (response: {json_result})"

            # validate result json response has valid values
            assert (
                json_result["id"] == request_id
            ), f"result 'id' and request 'id' mismatch ({json_result['id']} != {request_id})"
            assert (
                json_result["status"] == "completed"
            ), f"async workload did not complete (response: {json_result})"
            assert json_result[
                "timestamp"] != "", "result 'timestamp' value was empty"
            assert json_result[
                "result"] != "", "result 'result' value was empty"

    except:
        # best effort
        try:
            api_info = client.get_api(api_name)
            printer(json.dumps(api_info, indent=2))
        except:
            pass
        raise

    finally:
        if "results" in vars() and len(results) < total_requests:
            printer(
                f"{len(results)}/{total_requests} have been successfully retrieved"
            )
        map_stopper.set()
        delete_apis(client, [api_name])
Exemple #3
0
def test_load_realtime(
    printer: Callable,
    client: cx.Client,
    api: str,
    load_config: Dict[str, Union[int, float]],
    deploy_timeout: int = None,
    api_config_name: str = "cortex.yaml",
):

    total_requests = load_config["total_requests"]
    desired_replicas = load_config["desired_replicas"]
    concurrency = load_config["concurrency"]
    min_rtt = load_config["min_rtt"]
    max_rtt = load_config["max_rtt"]
    avg_rtt = load_config["avg_rtt"]
    avg_rtt_tolerance = load_config["avg_rtt_tolerance"]
    status_code_timeout = load_config["status_code_timeout"]

    api_dir = TEST_APIS_DIR / api
    with open(str(api_dir / api_config_name)) as f:
        api_specs = yaml.safe_load(f)
    assert len(api_specs) == 1
    api_specs[0]["autoscaling"] = {
        "min_replicas": desired_replicas,
        "max_replicas": desired_replicas,
    }
    api_name = api_specs[0]["name"]
    client.create_api(api_spec=api_specs[0], project_dir=api_dir)

    # controls the flow of requests
    request_stopper = td.Event()
    latencies: List[float] = []
    try:
        printer(f"getting {desired_replicas} replicas ready")
        assert apis_ready(client=client,
                          api_names=[api_name],
                          timeout=deploy_timeout), f"api {api_name} not ready"

        # give the APIs some time to prevent getting high latency spikes in the beginning
        time.sleep(5)

        with open(str(api_dir / "sample.json")) as f:
            payload = json.load(f)

        printer("start making requests concurrently")
        threads_futures = make_requests_concurrently(
            client,
            api_name,
            concurrency,
            request_stopper,
            latencies=latencies,
            max_total_requests=total_requests,
            payload=payload,
        )

        while not request_stopper.is_set():
            current_min_rtt = min(latencies) if len(latencies) > 0 else min_rtt
            assert (
                current_min_rtt >= min_rtt
            ), f"min latency threshold hit; got {current_min_rtt}s, but the lowest accepted latency is {min_rtt}s"

            current_max_rtt = max(latencies) if len(latencies) > 0 else max_rtt
            assert (
                current_max_rtt <= max_rtt
            ), f"max latency threshold hit; got {current_max_rtt}s, but the highest accepted latency is {max_rtt}s"

            current_avg_rtt = sum(latencies) / len(latencies) if len(
                latencies) > 0 else avg_rtt
            assert (
                current_avg_rtt > avg_rtt - avg_rtt_tolerance
                and current_avg_rtt < avg_rtt + avg_rtt_tolerance
            ), f"avg latency ({current_avg_rtt}s) falls outside the expected range ({avg_rtt - avg_rtt_tolerance}s - {avg_rtt + avg_rtt_tolerance})"

            api_info = client.get_api(api_name)
            network_stats = api_info["metrics"]["network_stats"]

            assert (
                network_stats["code_4xx"] == 0
            ), f"detected 4xx response codes ({network_stats['code_4xx']}) in cortex get"
            assert (
                network_stats["code_5xx"] == 0
            ), f"detected 5xx response codes ({network_stats['code_5xx']}) in cortex get"

            printer(
                f"min RTT: {current_min_rtt} | max RTT: {current_max_rtt} | avg RTT: {current_avg_rtt} | requests: {network_stats['code_2xx']} (out of {total_requests})"
            )

            # check if the requesting threads are still healthy
            # if not, they'll raise an exception
            check_futures_healthy(threads_futures)

            # don't stress the CPU too hard
            time.sleep(1)

        printer("verifying number of processed requests using the client")
        assert api_requests(
            client, api_name, total_requests, timeout=status_code_timeout
        ), f"the number of 2xx response codes for api {api_name} doesn't match the expected number {total_requests}"

    except:
        # best effort
        try:
            api_info = client.get_api(api_name)
            printer(json.dumps(api_info, indent=2))
        except:
            pass
        raise

    finally:
        request_stopper.set()
        delete_apis(client, [api_name])
Exemple #4
0
def test_autoscaling(
    printer: Callable,
    client: cx.Client,
    apis: Dict[str, Any],
    autoscaling_config: Dict[str, Union[int, float]],
    deploy_timeout: int = None,
    api_config_name: str = "cortex.yaml",
):
    max_replicas = autoscaling_config["max_replicas"]
    query_params = apis["query_params"]

    # increase the concurrency by 1 to ensure we get max_replicas replicas
    concurrency = max_replicas + 1

    all_apis = [apis["primary"]] + apis["dummy"]
    all_api_names = []
    for api in all_apis:
        api_dir = TEST_APIS_DIR / api
        with open(str(api_dir / api_config_name)) as f:
            api_specs = yaml.safe_load(f)
        assert len(api_specs) == 1
        api_specs[0]["autoscaling"] = {
            "max_replicas": max_replicas,
            "downscale_stabilization_period": "1m",
        }
        all_api_names.append(api_specs[0]["name"])
        client.create_api(api_spec=api_specs[0], project_dir=api_dir)

    primary_api_name = all_api_names[0]
    autoscaling = client.get_api(primary_api_name)["spec"]["autoscaling"]

    # controls the flow of requests
    request_stopper = td.Event()

    # determine upscale/downscale replica requests
    current_replicas = 1  # starting number of replicas
    test_timeout = 0  # measured in seconds
    while current_replicas < max_replicas:
        upscale_ceil = math.ceil(current_replicas *
                                 autoscaling["max_upscale_factor"])
        if upscale_ceil > current_replicas + 1:
            current_replicas = upscale_ceil
        else:
            current_replicas += 1
        if current_replicas > max_replicas:
            current_replicas = max_replicas
        test_timeout += int(autoscaling["upscale_stabilization_period"] /
                            (1000**3))
    while current_replicas > 1:
        downscale_ceil = math.ceil(current_replicas *
                                   autoscaling["max_downscale_factor"])
        if downscale_ceil < current_replicas - 1:
            current_replicas = downscale_ceil
        else:
            current_replicas -= 1
        test_timeout += int(autoscaling["downscale_stabilization_period"] /
                            (1000**3))

    # add overhead to the test timeout to account for the process of downloading images or adding nodes to the cluster
    test_timeout *= 2

    try:
        assert apis_ready(
            client=client, api_names=all_api_names,
            timeout=deploy_timeout), f"apis {all_api_names} not ready"

        threads_futures = make_requests_concurrently(client,
                                                     primary_api_name,
                                                     concurrency,
                                                     request_stopper,
                                                     query_params=query_params)

        test_start_time = time.time()

        # upscale/downscale the api
        printer(f"scaling up to {max_replicas} replicas")
        while True:
            assert api_updated(
                client, primary_api_name, timeout=deploy_timeout
            ), "api didn't scale up to the desired number of replicas in time"
            current_replicas = client.get_api(
                primary_api_name)["status"]["replica_counts"]["requested"]

            # stop the requests from being made
            if current_replicas == max_replicas and not request_stopper.is_set(
            ):
                printer(f"scaling back down to 1 replica")
                request_stopper.set()

            # check if the requesting threads are still healthy
            # if not, they'll raise an exception
            check_futures_healthy(threads_futures)

            # check if the test is taking too much time
            assert (
                time.time() - test_start_time < test_timeout
            ), f"autoscaling test for api {primary_api_name} did not finish in {test_timeout}s; current number of replicas is {current_replicas}/{concurrency}"

            # stop the test if it has finished
            if current_replicas == 1 and request_stopper.is_set():
                break

            # add some delay to reduce the number of gets
            time.sleep(1)

    except:
        # best effort
        try:
            api_info = client.get_api(primary_api_name)
            printer(json.dumps(api_info, indent=2))
        except:
            pass
        raise

    finally:
        request_stopper.set()
        delete_apis(client, all_api_names)
Exemple #5
0
def test_load_realtime(
    printer: Callable,
    client: cx.Client,
    api: str,
    load_config: Dict[str, Union[int, float]],
    deploy_timeout: int = None,
    api_config_name: str = "cortex_cpu.yaml",
    node_groups: List[str] = [],
):

    total_requests = load_config["total_requests"]
    desired_replicas = load_config["desired_replicas"]
    concurrency = load_config["concurrency"]
    status_code_timeout = load_config["status_code_timeout"]

    api_dir = TEST_APIS_DIR / api
    with open(str(api_dir / api_config_name)) as f:
        api_specs = yaml.safe_load(f)
    assert len(api_specs) == 1

    api_specs[0]["autoscaling"] = {
        "min_replicas": desired_replicas,
        "max_replicas": desired_replicas,
    }
    if len(node_groups) > 0:
        api_specs[0]["node_groups"] = node_groups

    api_name = api_specs[0]["name"]
    client.deploy(api_spec=api_specs[0])

    # controls the flow of requests
    request_stopper = td.Event()
    failed = False
    try:
        printer(f"getting {desired_replicas} replicas ready")
        assert apis_ready(client=client,
                          api_names=[api_name],
                          timeout=deploy_timeout), f"api {api_name} not ready"

        # give the APIs some time to prevent getting high latency spikes in the beginning
        time.sleep(5)

        with open(str(api_dir / "sample.json")) as f:
            payload = json.load(f)

        printer("start making requests concurrently")
        threads_futures = make_requests_concurrently(
            client,
            api_name,
            concurrency,
            request_stopper,
            max_total_requests=total_requests,
            payload=payload,
        )

        while not request_stopper.is_set():
            # check if the requesting threads are still healthy
            # if not, they'll raise an exception
            check_futures_healthy(threads_futures)

            # don't stress the CPU too hard
            time.sleep(1)
    except:
        # best effort
        failed = True
        try:
            api_info = client.get_api(api_name)
            printer(json.dumps(api_info, indent=2))
        finally:
            raise

    finally:
        request_stopper.set()
        delete_apis(client, [api_name])
        if failed:
            time.sleep(30)
Exemple #6
0
def test_load_realtime(
    printer: Callable,
    client: cx.Client,
    api: str,
    load_config: Dict[str, Union[int, float]],
    deploy_timeout: int = None,
    api_config_name: str = "cortex_cpu.yaml",
    node_groups: List[str] = [],
):

    total_requests = load_config["total_requests"]
    desired_replicas = load_config["desired_replicas"]
    concurrency = load_config["concurrency"]
    status_code_timeout = load_config["status_code_timeout"]

    api_dir = TEST_APIS_DIR / api
    with open(str(api_dir / api_config_name)) as f:
        api_specs = yaml.safe_load(f)
    assert len(api_specs) == 1

    api_specs[0]["autoscaling"] = {
        "min_replicas": desired_replicas,
        "max_replicas": desired_replicas,
    }
    if len(node_groups) > 0:
        api_specs[0]["node_groups"] = node_groups

    api_name = api_specs[0]["name"]
    client.deploy(api_spec=api_specs[0])

    # controls the flow of requests
    request_stopper = td.Event()
    failed = False
    try:
        printer(f"getting {desired_replicas} replicas ready")
        assert apis_ready(client=client,
                          api_names=[api_name],
                          timeout=deploy_timeout), f"api {api_name} not ready"

        network_stats = client.get_api(api_name)["metrics"]["network_stats"]
        offset_2xx = network_stats["code_2xx"]
        offset_4xx = network_stats["code_4xx"]
        offset_5xx = network_stats["code_5xx"]

        if offset_2xx is None:
            offset_2xx = 0
        if offset_4xx is None:
            offset_4xx = 0
        if offset_5xx is None:
            offset_5xx = 0

        # give the APIs some time to prevent getting high latency spikes in the beginning
        time.sleep(5)

        with open(str(api_dir / "sample.json")) as f:
            payload = json.load(f)

        printer("start making requests concurrently")
        threads_futures = make_requests_concurrently(
            client,
            api_name,
            concurrency,
            request_stopper,
            max_total_requests=total_requests,
            payload=payload,
        )

        while not request_stopper.is_set():
            api_info = client.get_api(api_name)
            network_stats = api_info["metrics"]["network_stats"]

            assert (
                network_stats["code_4xx"] - offset_4xx == 0
            ), f"detected 4xx response codes ({network_stats['code_4xx'] - offset_4xx}) in cortex get"
            assert (
                network_stats["code_5xx"] - offset_5xx == 0
            ), f"detected 5xx response codes ({network_stats['code_5xx'] - offset_5xx}) in cortex get"

            # check if the requesting threads are still healthy
            # if not, they'll raise an exception
            check_futures_healthy(threads_futures)

            # don't stress the CPU too hard
            time.sleep(1)

        printer(
            f"verifying number of processed requests ({total_requests}, with an offset of {offset_2xx}) using the client"
        )
        assert api_requests(
            client,
            api_name,
            total_requests + offset_2xx,
            timeout=status_code_timeout
        ), f"the number of 2xx response codes for api {api_name} doesn't match the expected number {total_requests}"

    except:
        # best effort
        failed = True
        try:
            api_info = client.get_api(api_name)
            printer(json.dumps(api_info, indent=2))
        finally:
            raise

    finally:
        request_stopper.set()
        delete_apis(client, [api_name])
        if failed:
            time.sleep(30)