Exemple #1
0
    def __init__(self,
                 n_input,
                 n_reservoir,
                 n_output,
                 spectralRadius=1.0,
                 noiseLevel=0.0,
                 inputScaling=None,
                 leakingRate=1.0,
                 feedbackScaling=1.0,
                 reservoirDensity=0.2,
                 randomSeed=None,
                 out_activation=lambda x: x,
                 out_inverse_activation=lambda x: x,
                 weightGeneration='naive',
                 bias=1.0,
                 outputBias=1.0,
                 feedback=False,
                 outputInputScaling=1.0,
                 inputDensity=1.0,
                 solver='pinv',
                 regressionParameters={},
                 activation=B.tanh,
                 activationDerivation=lambda x: 1.0 / B.cosh(x)**2):

        super(PredictionESN,
              self).__init__(n_input=n_input,
                             n_reservoir=n_reservoir,
                             n_output=n_output,
                             spectralRadius=spectralRadius,
                             noiseLevel=noiseLevel,
                             inputScaling=inputScaling,
                             leakingRate=leakingRate,
                             feedbackScaling=feedbackScaling,
                             reservoirDensity=reservoirDensity,
                             randomSeed=randomSeed,
                             feedback=feedback,
                             out_activation=out_activation,
                             out_inverse_activation=out_inverse_activation,
                             weightGeneration=weightGeneration,
                             bias=bias,
                             outputBias=outputBias,
                             outputInputScaling=outputInputScaling,
                             inputDensity=inputDensity,
                             activation=activation,
                             activationDerivation=activationDerivation)

        self._solver = solver
        self._regressionParameters = regressionParameters

        self._x = B.zeros((self.n_reservoir, 1))
        #self._WOut = np.random.rand(n_output, n_reservoir+1)#bias term
        self._WOut = np.random.rand(n_output,
                                    1 + n_input + n_reservoir)  #bias term
        #this seems to have been defined somewhere already
        self._X = B.zeros((1 + n_input + n_reservoir, 1))
        """
    def __init__(self, inputShape, n_reservoir,
                 filterSize=1, stride=1, borderMode="mirror", nWorkers="auto",
                 spectralRadius=1.0, noiseLevel=0.0, inputScaling=None,
                 leakingRate=1.0, reservoirDensity=0.2, randomSeed=None, averageOutputWeights=True,
                 out_activation=lambda x: x, out_inverse_activation=lambda x: x,
                 weightGeneration='naive', bias=1.0, outputBias=1.0,
                 outputInputScaling=1.0, inputDensity=1.0, solver='pinv', regressionParameters={}, activation=B.tanh,
                 activationDerivation=lambda x: 1.0 / B.cosh(x) ** 2):

        self._averageOutputWeights = averageOutputWeights
        if averageOutputWeights and solver != "lsqr":
            raise ValueError(
                "`averageOutputWeights` can only be set to `True` when `solver` is set to `lsqr` (Ridge Regression)")

        self._borderMode = borderMode
        if not borderMode in ["mirror", "padding", "edge", "wrap"]:
            raise ValueError(
                "`borderMode` must be set to one of the following values: `mirror`, `padding`, `edge` or `wrap`.")

        self._regressionParameters = regressionParameters
        self._solver = solver

        n_inputDimensions = len(inputShape)

        if filterSize % 2 == 0:
            raise ValueError("filterSize has to be an odd number (1, 3, 5, ...).")
        self._filterSize = filterSize
        self._filterWidth = int(np.floor(filterSize / 2))
        self._stride = stride

        self._n_input = int(np.power(np.ceil(filterSize / stride), n_inputDimensions))

        self.n_inputDimensions = n_inputDimensions
        self.inputShape = inputShape

        if not self._averageOutputWeights:
            self._WOuts = B.empty((np.prod(inputShape), 1, self._n_input + n_reservoir + 1))
            self._WOut = None
        else:
            self._WOuts = None
            self._WOut = B.zeros((1, self._n_input + n_reservoir + 1))
        self._xs = B.empty((np.prod(inputShape), n_reservoir, 1))

        if nWorkers == "auto":
            self._nWorkers = np.max((cpu_count() - 1, 1))
        else:
            self._nWorkers = nWorkers

        manager = Manager()
        self.sharedNamespace = manager.Namespace()
        if hasattr(self, "fitWorkerID") == False or self.parallelWorkerIDs is None:
            self.parallelWorkerIDs = manager.Queue()
            for i in range(self._nWorkers):
                self.parallelWorkerIDs.put((i))

        super(SpatioTemporalESN, self).__init__(n_input=self._n_input, n_reservoir=n_reservoir, n_output=1,
                                                spectralRadius=spectralRadius,
                                                noiseLevel=noiseLevel, inputScaling=inputScaling,
                                                leakingRate=leakingRate, reservoirDensity=reservoirDensity,
                                                randomSeed=randomSeed, out_activation=out_activation,
                                                out_inverse_activation=out_inverse_activation,
                                                weightGeneration=weightGeneration, bias=bias, outputBias=outputBias,
                                                outputInputScaling=outputInputScaling,
                                                inputDensity=inputDensity, activation=activation,
                                                activationDerivation=activationDerivation)

        """
Exemple #3
0
    def __init__(
        self,
        n_input,
        n_reservoir,
        n_output,
        spectralRadius=1.0,
        noiseLevel=0.0,
        inputScaling=None,
        leakingRate=1.0,
        reservoirDensity=0.2,
        randomSeed=None,
        out_activation=lambda x: x,
        out_inverse_activation=lambda x: x,
        weightGeneration="naive",
        bias=1.0,
        outputBias=1.0,
        outputInputScaling=1.0,
        inputDensity=1.0,
        solver="pinv",
        regressionParameters={},
        activation=B.tanh,
        activationDerivative=lambda x: 1.0 / B.cosh(x)**2,
    ):
        """ ESN that predicts a single value from a time series

        Args:
            n_input : Dimensionality of the input.
            n_reservoir : Number of units in the reservoir.
            n_output : Dimensionality of the output.
            spectralRadius : Spectral radius of the reservoir's connection/weight matrix.
            noiseLevel : Magnitude of noise that is added to the input while fitting to prevent overfitting.
            inputScaling : Scaling factor of the input.
            leakingRate : Convex combination factor between 0 and 1 that weights current and new state value.
            reservoirDensity : Percentage of non-zero weight connections in the reservoir.
            randomSeed : Seed for random processes, e.g. weight initialization.
            out_activation : Final activation function (i.e. activation function of the output).
            out_inverse_activation : Inverse of the final activation function
            weightGeneration : Algorithm to generate weight matrices. Choices: naive, SORM, advanced, custom
            bias : Size of the bias added for the internal update process.
            outputBias : Size of the bias added for the final linear regression of the output.
            outputInputScaling : Rescaling factor for the input of the ESN for the regression.
            inputDensity : Percentage of non-zero weights in the input-to-reservoir weight matrix.
            solver : Algorithm to find output matrix. Choices: pinv, lsqr.
            regressionParameters : Arguments to the solving algorithm. For LSQR this controls the L2 regularization.
            activation : (Non-linear) Activation function.
            activationDerivative : Derivative of the activation function.
        """

        super(RegressionESN, self).__init__(
            n_input=n_input,
            n_reservoir=n_reservoir,
            n_output=n_output,
            spectralRadius=spectralRadius,
            noiseLevel=noiseLevel,
            inputScaling=inputScaling,
            leakingRate=leakingRate,
            reservoirDensity=reservoirDensity,
            randomSeed=randomSeed,
            out_activation=out_activation,
            out_inverse_activation=out_inverse_activation,
            weightGeneration=weightGeneration,
            bias=bias,
            outputBias=outputBias,
            outputInputScaling=outputInputScaling,
            inputDensity=inputDensity,
            activation=activation,
            activationDerivative=activationDerivative,
        )

        self._solver = solver
        self._regressionParameters = regressionParameters
        """
    def __init__(self,
                 n_input,
                 n_output1,
                 n_output2,
                 n_reservoir,
                 spectralRadius=1.0,
                 noiseLevel=0.0,
                 inputScaling=None,
                 leakingRate=1.0,
                 feedbackScaling=1.0,
                 reservoirDensity=0.2,
                 randomSeed=None,
                 out_activation=lambda x: x,
                 out_inverse_activation=lambda x: x,
                 weightGeneration='naive',
                 bias=1.0,
                 outputBias=1.0,
                 outputInputScaling=1.0,
                 inputDensity=1.0,
                 solver='pinv',
                 regressionParameters={},
                 activation=B.tanh,
                 activationDerivation=lambda x: 1.0 / B.cosh(x)**2):

        #probably not needed
        super(StackedESN,
              self).__init__(n_input=n_input,
                             n_reservoir=n_reservoir,
                             n_output=n_output1,
                             spectralRadius=spectralRadius,
                             noiseLevel=noiseLevel,
                             inputScaling=inputScaling,
                             leakingRate=leakingRate,
                             feedbackScaling=feedbackScaling,
                             reservoirDensity=reservoirDensity,
                             randomSeed=randomSeed,
                             feedback=False,
                             out_activation=out_activation,
                             out_inverse_activation=out_inverse_activation,
                             weightGeneration=weightGeneration,
                             bias=bias,
                             outputBias=outputBias,
                             outputInputScaling=outputInputScaling,
                             inputDensity=inputDensity,
                             activation=activation,
                             activationDerivation=activationDerivation)

        #layers
        self._esn1 = PredictionESN(
            n_input=(n_input + n_output2),
            n_reservoir=n_reservoir,
            n_output=n_output1,
            spectralRadius=spectralRadius,
            noiseLevel=noiseLevel,
            inputScaling=inputScaling,
            leakingRate=leakingRate,
            feedbackScaling=feedbackScaling,
            reservoirDensity=reservoirDensity,
            randomSeed=randomSeed,
            feedback=False,
            out_activation=out_activation,
            out_inverse_activation=out_inverse_activation,
            weightGeneration=weightGeneration,
            bias=bias,
            outputBias=outputBias,
            outputInputScaling=outputInputScaling,
            inputDensity=inputDensity,
            activation=activation,
            activationDerivation=activationDerivation)

        #esn_2 takes coordinates in (estimated and actual)
        self._esn2 = PredictionESN(
            n_input=n_output1 * 2,
            n_reservoir=n_reservoir,
            n_output=n_output2,
            spectralRadius=spectralRadius,
            noiseLevel=noiseLevel,
            inputScaling=inputScaling,
            leakingRate=leakingRate,
            feedbackScaling=feedbackScaling,
            reservoirDensity=reservoirDensity,
            randomSeed=randomSeed,
            feedback=False,
            out_activation=out_activation,
            out_inverse_activation=out_inverse_activation,
            weightGeneration=weightGeneration,
            bias=bias,
            outputBias=outputBias,
            outputInputScaling=outputInputScaling,
            inputDensity=inputDensity,
            activation=activation,
            activationDerivation=activationDerivation)

        self._solver = solver
        self._regressionParameters = regressionParameters
        self._transientTime = 0

        self._n_output1 = n_output1
        self._n_output2 = n_output2
        self._training_res = B.empty((2, 2))
        """
Exemple #5
0
    def __init__(self, n_input, n_reservoir, n_output,
                 spectralRadius=1.0, noiseLevel=0.01, inputScaling=None,
                 leakingRate=1.0, feedbackScaling = 1.0, reservoirDensity=0.2, randomSeed=None,
                 out_activation=lambda x: x, out_inverse_activation=lambda x: x,
                 weightGeneration='naive', bias=1.0, outputBias=1.0, outputInputScaling=1.0,
                 feedback=False, inputDensity=1.0, activation = B.tanh, activationDerivation=lambda x: 1.0/B.cosh(x)**2):

        self.n_input = n_input
        self.n_reservoir = n_reservoir
        self.n_output = n_output

        self._spectralRadius = spectralRadius
        self._noiseLevel = noiseLevel
        self._reservoirDensity = reservoirDensity
        self._leakingRate = leakingRate
        self._feedbackScaling = feedbackScaling
        self.inputDensity = inputDensity
        self._activation = activation
        self._activationDerivation = activationDerivation
        self._inputScaling = inputScaling
        
        #this seems to be initialized somewhere (mystery)
        #self._x = np.zeros(( 1+ n_reservoir, 1))

        if self._inputScaling is None:
            self._inputScaling = 1.0
        if np.isscalar(self._inputScaling):
            self._inputScaling = B.ones(n_input) * self._inputScaling
        else:
            if len(self._inputScaling) != self.n_input:
                raise ValueError("Dimension of inputScaling ({0}) does not match the input data dimension ({1})".format(len(self._inputScaling), n_input))
            self._inputScaling = inputScaling

        self._expandedInputScaling = B.vstack((B.array(1.0), self._inputScaling.reshape(-1,1))).flatten()

        self.out_activation = out_activation
        self.out_inverse_activation = out_inverse_activation

        if randomSeed is not None:
            rnd.seed(randomSeed)

        self._bias = bias
        self._outputBias = outputBias
        self._outputInputScaling = outputInputScaling
        self._createReservoir(weightGeneration, feedback)
Exemple #6
0
    def __init__(
        self,
        n_input,
        n_reservoir,
        n_output,
        spectralRadius=1.0,
        noiseLevel=0.01,
        inputScaling=None,
        leakingRate=1.0,
        feedbackScaling=1.0,
        reservoirDensity=0.2,
        randomSeed=None,
        out_activation=lambda x: x,
        out_inverse_activation=lambda x: x,
        weightGeneration="naive",
        bias=1.0,
        outputBias=1.0,
        outputInputScaling=1.0,
        feedback=False,
        inputDensity=1.0,
        activation=B.tanh,
        activationDerivative=lambda x: 1.0 / B.cosh(x)**2,
    ):
        """Implementation of a ESN.

        Args:
            n_input : Dimensionality of the input.
            n_reservoir : Number of units in the reservoir.
            n_output : Dimensionality of the output.
            spectralRadius : Spectral radius of the reservoir's connection/weight matrix.
            noiseLevel : Magnitude of noise that is added to the input while fitting to prevent overfitting.
            inputScaling : Scaling factor of the input.
            leakingRate : Convex combination factor between 0 and 1 that weights current and new state value.
            feedbackScaling : Rescaling factor of the output-to-input feedback in the update process.
            reservoirDensity : Percentage of non-zero weight connections in the reservoir.
            randomSeed : Seed for random processes, e.g. weight initialization.
            out_activation : Final activation function (i.e. activation function of the output).
            out_inverse_activation : Inverse of the final activation function
            weightGeneration : Algorithm to generate weight matrices. Choices: naive, SORM, advanced, custom
            bias : Size of the bias added for the internal update process.
            outputBias : Size of the bias added for the final linear regression of the output.
            outputInputScaling : Rescaling factor for the input of the ESN for the regression.
            feedback : Include output-input feedback in the ESN.
            inputDensity : Percentage of non-zero weights in the input-to-reservoir weight matrix.
            activation : (Non-linear) Activation function.
            activationDerivative : Derivative of the activation function.
        """

        self.n_input = n_input
        self.n_reservoir = n_reservoir
        self.n_output = n_output

        self._spectralRadius = spectralRadius
        self._noiseLevel = noiseLevel
        self._reservoirDensity = reservoirDensity
        self._leakingRate = leakingRate
        self._feedbackScaling = feedbackScaling
        self.inputDensity = inputDensity
        self._activation = activation
        self._activationDerivative = activationDerivative
        self._inputScaling = inputScaling

        if self._inputScaling is None:
            self._inputScaling = 1.0
        if np.isscalar(self._inputScaling):
            self._inputScaling = B.ones(n_input) * self._inputScaling
        else:
            if len(self._inputScaling) != self.n_input:
                raise ValueError(
                    "Dimension of inputScaling ({0}) does not match the input data dimension ({1})"
                    .format(len(self._inputScaling), n_input))
            self._inputScaling = inputScaling

        self._expandedInputScaling = B.vstack(
            (B.array(1.0), self._inputScaling.reshape(-1, 1))).flatten()

        self.out_activation = out_activation
        self.out_inverse_activation = out_inverse_activation

        if randomSeed is not None:
            B.seed(randomSeed)
            np.random.seed(randomSeed)

        self._bias = bias
        self._outputBias = outputBias
        self._outputInputScaling = outputInputScaling
        self._createReservoir(weightGeneration, feedback)
Exemple #7
0
    def __init__(
        self,
        inputShape,
        n_reservoir,
        filterSize=1,
        stride=1,
        borderMode="mirror",
        nWorkers="auto",
        spectralRadius=1.0,
        noiseLevel=0.0,
        inputScaling=None,
        leakingRate=1.0,
        reservoirDensity=0.2,
        randomSeed=None,
        averageOutputWeights=True,
        out_activation=lambda x: x,
        out_inverse_activation=lambda x: x,
        weightGeneration="naive",
        bias=1.0,
        outputBias=1.0,
        outputInputScaling=1.0,
        inputDensity=1.0,
        solver="pinv",
        regressionParameters={},
        activation=B.tanh,
        activationDerivative=lambda x: 1.0 / B.cosh(x)**2,
        chunkSize=16,
    ):
        """ ESN that predicts (steps of) a spatio-temporal time series based on a time series.

            Args:
                inputShape : Shape of the input w/o the time axis, e.g. (W, H) for a 2D input.
                n_reservoir : Number of units in the reservoir.
                filterSize : Size of patches used to predict a single output element.
                stride : Stride between different patches.
                borderMode : How to handle border values. Choices: mirror, padding, edge, wrap.
                nWorkers : Number of CPU threads executed in parallel to solve the problem.
                spectralRadius : Spectral radius of the reservoir's connection/weight matrix.
                noiseLevel : Magnitude of noise that is added to the input while fitting to prevent overfitting.
                inputScaling : Scaling factor of the input.
                leakingRate : Convex combination factor between 0 and 1 that weights current and new state value.
                reservoirDensity : Percentage of non-zero weight connections in the reservoir.
                randomSeed : Seed for random processes, e.g. weight initialization.
                averageOutputWeights : Average output matrices after fitting across all pixels or use a distinct matrix
                                        per pixel. The former assumes homogeneity of the problem across all pixels.
                out_activation : Final activation function (i.e. activation function of the output).
                out_inverse_activation : Inverse of the final activation function
                weightGeneration : Algorithm to generate weight matrices. Choices: naive, SORM, advanced, custom
                bias : Size of the bias added for the internal update process.
                outputBias : Size of the bias added for the final linear regression of the output.
                outputInputScaling : Rescaling factor for the input of the ESN for the regression.
                inputDensity : Percentage of non-zero weights in the input-to-reservoir weight matrix.
                solver : Algorithm to find output matrix. Choices: pinv, lsqr.
                regressionParameters : Arguments to the solving algorithm. For LSQR this controls the L2 regularization.
                activation : (Non-linear) Activation function.
                activationDerivative : Derivative of the activation function.
                chunkSize : Internal parameter for the multi-threading. For long time series this should be reduced to
                            avoid OOM errors/getting stuck and to reduce memory consumption.
        """

        self._averageOutputWeights = averageOutputWeights
        if averageOutputWeights and solver != "lsqr":
            raise ValueError(
                "`averageOutputWeights` can only be set to `True` when `solver` is set to `lsqr` (Ridge Regression)"
            )

        self._borderMode = borderMode
        if not borderMode in ["mirror", "padding", "edge", "wrap"]:
            raise ValueError(
                "`borderMode` must be set to one of the following values: `mirror`, `padding`, `edge` or `wrap`."
            )

        self._regressionParameters = regressionParameters
        self._solver = solver

        n_inputDimensions = len(inputShape)

        if filterSize % 2 == 0:
            raise ValueError(
                "filterSize has to be an odd number (1, 3, 5, ...).")
        self._filterSize = filterSize
        self._filterWidth = int(np.floor(filterSize / 2))
        self._stride = stride

        self._n_input = int(
            np.power(np.ceil(filterSize / stride), n_inputDimensions))

        self.n_inputDimensions = n_inputDimensions
        self.inputShape = inputShape

        if not self._averageOutputWeights:
            self._WOuts = B.empty(
                (np.prod(inputShape), 1, self._n_input + n_reservoir + 1))
            self._WOut = None
        else:
            self._WOuts = None
            self._WOut = B.zeros((1, self._n_input + n_reservoir + 1))
        self._xs = B.empty((np.prod(inputShape), n_reservoir, 1))

        if nWorkers == "auto":
            self._nWorkers = np.max((cpu_count() - 1, 1))
        else:
            self._nWorkers = nWorkers

        manager = Manager()
        self.sharedNamespace = manager.Namespace()
        if hasattr(self,
                   "fitWorkerID") == False or self.parallelWorkerIDs is None:
            self.parallelWorkerIDs = manager.Queue()
            for i in range(self._nWorkers):
                self.parallelWorkerIDs.put((i))

        self._chunkSize = chunkSize

        super(SpatioTemporalESN, self).__init__(
            n_input=self._n_input,
            n_reservoir=n_reservoir,
            n_output=1,
            spectralRadius=spectralRadius,
            noiseLevel=noiseLevel,
            inputScaling=inputScaling,
            leakingRate=leakingRate,
            reservoirDensity=reservoirDensity,
            randomSeed=randomSeed,
            out_activation=out_activation,
            out_inverse_activation=out_inverse_activation,
            weightGeneration=weightGeneration,
            bias=bias,
            outputBias=outputBias,
            outputInputScaling=outputInputScaling,
            inputDensity=inputDensity,
            activation=activation,
            activationDerivative=activationDerivative,
        )
        """