Exemple #1
0
    def propagateOneStep(self, inputData, outputData, step, transientTime=0, verbose=0, steps="auto", learn=False):

        if (verbose > 0):
            bar = progressbar.ProgressBar(max_value=inputLength, redirect_stdout=True, poll_interval=0.0001)
            bar.update(0)

        x = self._x

        #updates states
        u, x = self.update(inputData=inputData, x=x)
        self._x = x
        
        self._X = B.vstack((B.array(self._outputBias), self._outputInputScaling*u, x))

        # calculate output
        #estimatedData = self.out_activation(B.dot(self._WOut, self._X).T)
        #y_step = estimatedData 
        Y = B.dot(self._WOut, self._X)

        if(learn):
            #learning rate
            rate = 0.1
            #calculate target activation
            y_target = self.out_inverse_activation(outputData).T
            #solve for Wout by using expected_output and states
            wout = B.dot(y_target.reshape(self.n_output,1), B.pinv(self._X)) #.reshape(self.n_output,1)
            self._WOut = rate*wout + (1-rate)*self._WOut
           
        if (verbose > 0):
            bar.update(t)
                                 
        if (verbose > 0):
            bar.finish()

        return self._X, Y
    def _fitProcess(self, data):
        try:
            inData, outData, indices, state = data
            transientTime = self.sharedNamespace.transientTime

            partialLength = self.sharedNamespace.partialLength
            totalLength = self.sharedNamespace.totalLength
            timeseriesCount = self.sharedNamespace.timeseriesCount

            workerID = self.parallelWorkerIDs.get()
            self._x[workerID] = state

            # propagate
            X = B.empty((1 + self.n_input + self.n_reservoir, totalLength))

            for i in range(timeseriesCount):
                X[:, i * partialLength:(i + 1) * partialLength] = self.propagate(inData[i], transientTime=transientTime,
                                                                                 x=self._x[workerID], verbose=0)

            # define the target values
            Y_target = B.empty((1, totalLength))
            for i in range(timeseriesCount):
                Y_target[:, i * partialLength:(i + 1) * partialLength] = self.out_inverse_activation(outData[i]).T[:,
                                                                         transientTime:]

            # now fit
            WOut = None
            if self._solver == "pinv":
                WOut = B.dot(Y_target, B.pinv(X))

            elif self._solver == "lsqr":
                X_T = X.T
                WOut = B.dot(B.dot(Y_target, X_T), B.inv(
                    B.dot(X, X_T) + self._regressionParameters[0] * B.identity(1 + self.n_input + self.n_reservoir)))

            # calculate the training prediction now
            # trainingPrediction = self.out_activation(B.dot(WOut, X).T)

            # store the state and the output matrix of the worker
            SpatioTemporalESN._fitProcess.fitQueue.put(
                ([x - self._filterWidth for x in indices], self._x[workerID].copy(), WOut.copy()))

            self.parallelWorkerIDs.put(workerID)

        except Exception as ex:
            print(ex)
            import traceback
            traceback.print_exc()

            SpatioTemporalESN._fitProcess.fitQueue.put(([x - self._filterWidth for x in indices], None, None))

            self.parallelWorkerIDs.put(workerID)
Exemple #3
0
    def fit(self,
            inputData,
            outputData,
            transientTime="AutoReduce",
            transientTimeCalculationEpsilon=1e-3,
            transientTimeCalculationLength=20,
            verbose=0):
        #check the input data
        if self.n_input != 0:
            if len(inputData.shape) == 3 and len(outputData.shape) > 1:
                #multiple time series are used with a shape (timeseries, time, dimension) -> (timeseries, time, dimension)
                if inputData.shape[0] != outputData.shape[0]:
                    raise ValueError(
                        "Amount of input and output datasets is not equal - {0} != {1}"
                        .format(inputData.shape[0], outputData.shape[0]))
                if inputData.shape[1] != outputData.shape[1]:
                    raise ValueError(
                        "Amount of input and output time steps is not equal - {0} != {1}"
                        .format(inputData.shape[1], outputData.shape[1]))
            else:
                if inputData.shape[0] != outputData.shape[0]:
                    raise ValueError(
                        "Amount of input and output time steps is not equal - {0} != {1}"
                        .format(inputData.shape[0], outputData.shape[0]))
        else:
            if inputData is not None:
                raise ValueError(
                    "n_input has been set to zero. Therefore, the given inputData will not be used."
                )

        if inputData is not None:
            inputData = B.array(inputData)
        if outputData is not None:
            outputData = B.array(outputData)

        #reshape the input/output data to have the shape (timeseries, time, dimension)
        if len(outputData.shape) <= 2:
            outputData = outputData.reshape((1, -1, self.n_output))
        if inputData is not None:
            if len(inputData.shape) <= 2:
                inputData = inputData.reshape((1, -1, self.n_input))

        self.resetState()

        # Automatic transient time calculations
        if transientTime == "Auto":
            transientTime = self.calculateTransientTime(
                inputData[0], outputData[0], transientTimeCalculationEpsilon,
                transientTimeCalculationLength)
        if transientTime == "AutoReduce":
            if (inputData is None
                    and outputData.shape[2] == 1) or inputData.shape[2] == 1:
                transientTime = self.calculateTransientTime(
                    inputData[0], outputData[0],
                    transientTimeCalculationEpsilon,
                    transientTimeCalculationLength)
                transientTime = self.reduceTransientTime(
                    inputData[0], outputData[0], transientTime)
            else:
                print(
                    "Transient time reduction is supported only for 1 dimensional input."
                )

        if inputData is not None:
            partialLength = (inputData.shape[1] - transientTime)
            totalLength = inputData.shape[0] * partialLength
            timeseriesCount = inputData.shape[0]
        elif outputData is not None:
            partialLength = (outputData.shape[1] - transientTime)
            totalLength = outputData.shape[0] * partialLength
            timeseriesCount = outputData.shape[0]
        else:
            raise ValueError("Either input or output data must not to be None")

        self._X = B.empty((1 + self.n_input + self.n_reservoir, totalLength))

        if (verbose > 0):
            bar = progressbar.ProgressBar(max_value=totalLength,
                                          redirect_stdout=True,
                                          poll_interval=0.0001)
            bar.update(0)

        for i in range(timeseriesCount):
            if inputData is not None:
                xx, yy = self.propagate(inputData[i], outputData[i],
                                        transientTime, verbose - 1)
                self._X[:, i * partialLength:(i + 1) * partialLength] = xx
            else:
                xx, yy = self.propagate(None, outputData[i], transientTime,
                                        verbose - 1)
                self._X[:, i * partialLength:(i + 1) * partialLength] = xx
            if (verbose > 0):
                bar.update(i)
        if (verbose > 0):
            bar.finish()

        #define the target values
        Y_target = B.empty((outputData.shape[2], totalLength))
        for i in range(timeseriesCount):
            Y_target[:, i * partialLength:(i + 1) *
                     partialLength] = self.out_inverse_activation(
                         outputData[i]).T[:, transientTime:]

        if (self._solver == "pinv"):
            self._WOut = B.dot(Y_target, B.pinv(self._X))

            #calculate the training prediction now
            train_prediction = self.out_activation((B.dot(self._WOut,
                                                          self._X)).T)

        # elif (self._solver == "lsqr"):
        #     X_T = self._X.T
        #     self._WOut = B.dot(B.dot(Y_target, X_T),B.inv(B.dot(self._X,X_T) + self._regressionParameters[0]*B.identity(1+self.n_input+self.n_reservoir)))

        #     """
        #         #alternative representation of the equation

        #         Xt = X.T

        #         A = np.dot(X, Y_target.T)

        #         B = np.linalg.inv(np.dot(X, Xt)  + regression_parameter*np.identity(1+self.n_input+self.n_reservoir))

        #         self._WOut = np.dot(B, A)
        #         self._WOut = self._WOut.T
        #     """

        #     #calculate the training prediction now
        #     train_prediction = self.out_activation(B.dot(self._WOut, self._X).T)

        elif (self._solver in [
                "sklearn_auto", "sklearn_lsqr", "sklearn_sag", "sklearn_svd"
        ]):
            mode = self._solver[8:]
            params = self._regressionParameters
            params["solver"] = mode
            self._ridgeSolver = Ridge(**params)

            self._ridgeSolver.fit(self._X.T, Y_target.T)

            #calculate the training prediction now
            train_prediction = self.out_activation(
                self._ridgeSolver.predict(self._X.T))

        elif (self._solver in ["sklearn_svr", "sklearn_svc"]):
            self._ridgeSolver = SVR(**self._regressionParameters)

            self._ridgeSolver.fit(self._X.T, Y_target.T.ravel())

            #calculate the training prediction now
            train_prediction = self.out_activation(
                self._ridgeSolver.predict(self._X.T))

        #calculate the training error now
        #flatten the outputData
        outputData = outputData[:, transientTime:, :].reshape(totalLength, -1)
        training_error = B.sqrt(B.mean((train_prediction - outputData)**2))
        return training_error
Exemple #4
0
    def fit(
        self,
        inputData,
        outputData,
        transientTime="AutoReduce",
        transientTimeCalculationEpsilon=1e-3,
        transientTimeCalculationLength=20,
        verbose=0,
    ):
        # check the input data
        if inputData.shape[0] != outputData.shape[0]:
            raise ValueError(
                "Amount of input and output datasets is not equal - {0} != {1}"
                .format(inputData.shape[0], outputData.shape[0]))

        nSequences = inputData.shape[0]
        trainingLength = inputData.shape[1]

        self._x = B.zeros((self.n_reservoir, 1))

        # Automatic transient time calculations
        if transientTime == "Auto":
            transientTime = self.calculateTransientTime(
                inputData,
                outputData,
                transientTimeCalculationEpsilon,
                transientTimeCalculationLength,
            )
        if transientTime == "AutoReduce":
            if (inputData is None
                    and outputData.shape[1] == 1) or inputData.shape[1] == 1:
                transientTime = self.calculateTransientTime(
                    inputData,
                    outputData,
                    transientTimeCalculationEpsilon,
                    transientTimeCalculationLength,
                )
                transientTime = self.reduceTransientTime(
                    inputData, outputData, transientTime)
            else:
                print(
                    "Transient time reduction is supported only for 1 dimensional input."
                )

        self._X = B.zeros((
            1 + self.n_input + self.n_reservoir,
            nSequences * (trainingLength - transientTime),
        ))
        Y_target = B.zeros(
            (self.n_output, (trainingLength - transientTime) * nSequences))

        if verbose > 0:
            bar = progressbar.ProgressBar(max_value=len(inputData),
                                          redirect_stdout=True,
                                          poll_interval=0.0001)
            bar.update(0)

        for n in range(len(inputData)):
            self._x = B.zeros((self.n_reservoir, 1))
            self._X[:, n * (trainingLength - transientTime):(n + 1) *
                    (trainingLength - transientTime), ] = self.propagate(
                        inputData[n], transientTime=transientTime, verbose=0)
            # set the target values
            Y_target[:, n * (trainingLength - transientTime):(n + 1) *
                     (trainingLength - transientTime), ] = np.tile(
                         self.out_inverse_activation(outputData[n]),
                         trainingLength - transientTime,
                     ).T

            if verbose > 0:
                bar.update(n)

        if verbose > 0:
            bar.finish()

        if self._solver == "pinv":
            self._WOut = B.dot(Y_target, B.pinv(self._X))

            # calculate the training prediction now
            train_prediction = self.out_activation((B.dot(self._WOut,
                                                          self._X)).T)

        elif self._solver == "lsqr":
            X_T = self._X.T
            self._WOut = B.dot(
                B.dot(Y_target, X_T),
                B.inv(
                    B.dot(self._X, X_T) + self._regressionParameters[0] *
                    B.identity(1 + self.n_input + self.n_reservoir)),
            )
            """
                #alternative represantation of the equation

                Xt = X.T

                A = np.dot(X, Y_target.T)

                B = np.linalg.inv(np.dot(X, Xt)  + regression_parameter*np.identity(1+self.n_input+self.n_reservoir))

                self._WOut = np.dot(B, A)
                self._WOut = self._WOut.T
            """

            # calculate the training prediction now
            train_prediction = self.out_activation(
                B.dot(self._WOut, self._X).T)

        elif self._solver in [
                "sklearn_auto",
                "sklearn_lsqr",
                "sklearn_sag",
                "sklearn_svd",
        ]:
            mode = self._solver[8:]
            params = self._regressionParameters
            params["solver"] = mode
            self._ridgeSolver = Ridge(**params)

            self._ridgeSolver.fit(self._X.T, Y_target.T)

            # calculate the training prediction now
            train_prediction = self.out_activation(
                self._ridgeSolver.predict(self._X.T))

        elif self._solver in ["sklearn_svr", "sklearn_svc"]:
            self._ridgeSolver = SVR(**self._regressionParameters)

            self._ridgeSolver.fit(self._X.T, Y_target.T.flatten())

            # calculate the training prediction now
            train_prediction = self.out_activation(
                self._ridgeSolver.predict(self._X.T))

        train_prediction = np.mean(train_prediction, 0)

        # calculate the training error now
        training_error = B.sqrt(B.mean((train_prediction - outputData.T)**2))
        return training_error
    def fit(self,
            inputData,
            outputData1,
            outputData2,
            transientTime="AutoReduce",
            transientTimeCalculationEpsilon=1e-3,
            transientTimeCalculationLength=20,
            verbose=0):
        #check the input data
        if self.n_input != 0:
            if len(inputData.shape) == 3 and len(outputData1.shape) > 1:
                #multiple time series are used with a shape (timeseries, time, dimension) -> (timeseries, time, dimension)
                if inputData.shape[0] != outputData1.shape[0]:
                    raise ValueError(
                        "Amount of input and output datasets is not equal - {0} != {1}"
                        .format(inputData.shape[0], outputData1.shape[0]))
                if inputData.shape[1] != outputData1.shape[1]:
                    raise ValueError(
                        "Amount of input and output time steps is not equal - {0} != {1}"
                        .format(inputData.shape[1], outputData1.shape[1]))
            else:
                if inputData.shape[0] != outputData1.shape[0]:
                    raise ValueError(
                        "Amount of input and output time steps is not equal - {0} != {1}"
                        .format(inputData.shape[0], outputData1.shape[0]))
        else:
            if inputData is not None:
                raise ValueError(
                    "n_input has been set to zero. Therefore, the given inputData will not be used."
                )

        inputData = B.array(inputData)
        outputData1 = B.array(outputData1)
        outputData2 = B.array(outputData2)
        self._transientTime = transientTime

        self._esn1.resetState()
        self._esn2.resetState()

        total_length = inputData.shape[0]
        print("total_length ", total_length)

        aggregated_y1 = B.empty((outputData1.shape))
        aggregated_y2 = B.empty((outputData2.shape))

        #put pixels and switch data together
        inputDataWithFeedback = B.zeros(
            (total_length, self.n_input + self._n_output2))
        inputDataWithFeedback[:, :self.n_input] = inputData
        inputDataWithFeedback[:, self.n_input:] = outputData2

        X1, _ = self._esn1.propagate(inputData=inputDataWithFeedback,
                                     outputData=outputData1,
                                     transientTime=transientTime,
                                     verbose=verbose - 1)
        self._esn1._X = X1

        Y_target = self.out_inverse_activation(outputData1).T
        self._esn1._WOut = B.dot(Y_target, B.pinv(X1))
        aggregated_y1 = self.out_activation((B.dot(self._esn1._WOut, X1)).T)
        training_error1 = B.sqrt(
            B.mean((aggregated_y1.reshape(
                (total_length, self._n_output1)) - outputData1)**2))
        training_error2 = 0

        training_error1 = B.sqrt(B.mean((aggregated_y1 - outputData1)**2))
        training_error2 = B.sqrt(B.mean((aggregated_y2 - outputData2)**2))

        return training_error1, training_error2