def propagateOneStep(self, inputData, outputData, step, transientTime=0, verbose=0, steps="auto", learn=False): if (verbose > 0): bar = progressbar.ProgressBar(max_value=inputLength, redirect_stdout=True, poll_interval=0.0001) bar.update(0) x = self._x #updates states u, x = self.update(inputData=inputData, x=x) self._x = x self._X = B.vstack((B.array(self._outputBias), self._outputInputScaling*u, x)) # calculate output #estimatedData = self.out_activation(B.dot(self._WOut, self._X).T) #y_step = estimatedData Y = B.dot(self._WOut, self._X) if(learn): #learning rate rate = 0.1 #calculate target activation y_target = self.out_inverse_activation(outputData).T #solve for Wout by using expected_output and states wout = B.dot(y_target.reshape(self.n_output,1), B.pinv(self._X)) #.reshape(self.n_output,1) self._WOut = rate*wout + (1-rate)*self._WOut if (verbose > 0): bar.update(t) if (verbose > 0): bar.finish() return self._X, Y
def _fitProcess(self, data): try: inData, outData, indices, state = data transientTime = self.sharedNamespace.transientTime partialLength = self.sharedNamespace.partialLength totalLength = self.sharedNamespace.totalLength timeseriesCount = self.sharedNamespace.timeseriesCount workerID = self.parallelWorkerIDs.get() self._x[workerID] = state # propagate X = B.empty((1 + self.n_input + self.n_reservoir, totalLength)) for i in range(timeseriesCount): X[:, i * partialLength:(i + 1) * partialLength] = self.propagate(inData[i], transientTime=transientTime, x=self._x[workerID], verbose=0) # define the target values Y_target = B.empty((1, totalLength)) for i in range(timeseriesCount): Y_target[:, i * partialLength:(i + 1) * partialLength] = self.out_inverse_activation(outData[i]).T[:, transientTime:] # now fit WOut = None if self._solver == "pinv": WOut = B.dot(Y_target, B.pinv(X)) elif self._solver == "lsqr": X_T = X.T WOut = B.dot(B.dot(Y_target, X_T), B.inv( B.dot(X, X_T) + self._regressionParameters[0] * B.identity(1 + self.n_input + self.n_reservoir))) # calculate the training prediction now # trainingPrediction = self.out_activation(B.dot(WOut, X).T) # store the state and the output matrix of the worker SpatioTemporalESN._fitProcess.fitQueue.put( ([x - self._filterWidth for x in indices], self._x[workerID].copy(), WOut.copy())) self.parallelWorkerIDs.put(workerID) except Exception as ex: print(ex) import traceback traceback.print_exc() SpatioTemporalESN._fitProcess.fitQueue.put(([x - self._filterWidth for x in indices], None, None)) self.parallelWorkerIDs.put(workerID)
def fit(self, inputData, outputData, transientTime="AutoReduce", transientTimeCalculationEpsilon=1e-3, transientTimeCalculationLength=20, verbose=0): #check the input data if self.n_input != 0: if len(inputData.shape) == 3 and len(outputData.shape) > 1: #multiple time series are used with a shape (timeseries, time, dimension) -> (timeseries, time, dimension) if inputData.shape[0] != outputData.shape[0]: raise ValueError( "Amount of input and output datasets is not equal - {0} != {1}" .format(inputData.shape[0], outputData.shape[0])) if inputData.shape[1] != outputData.shape[1]: raise ValueError( "Amount of input and output time steps is not equal - {0} != {1}" .format(inputData.shape[1], outputData.shape[1])) else: if inputData.shape[0] != outputData.shape[0]: raise ValueError( "Amount of input and output time steps is not equal - {0} != {1}" .format(inputData.shape[0], outputData.shape[0])) else: if inputData is not None: raise ValueError( "n_input has been set to zero. Therefore, the given inputData will not be used." ) if inputData is not None: inputData = B.array(inputData) if outputData is not None: outputData = B.array(outputData) #reshape the input/output data to have the shape (timeseries, time, dimension) if len(outputData.shape) <= 2: outputData = outputData.reshape((1, -1, self.n_output)) if inputData is not None: if len(inputData.shape) <= 2: inputData = inputData.reshape((1, -1, self.n_input)) self.resetState() # Automatic transient time calculations if transientTime == "Auto": transientTime = self.calculateTransientTime( inputData[0], outputData[0], transientTimeCalculationEpsilon, transientTimeCalculationLength) if transientTime == "AutoReduce": if (inputData is None and outputData.shape[2] == 1) or inputData.shape[2] == 1: transientTime = self.calculateTransientTime( inputData[0], outputData[0], transientTimeCalculationEpsilon, transientTimeCalculationLength) transientTime = self.reduceTransientTime( inputData[0], outputData[0], transientTime) else: print( "Transient time reduction is supported only for 1 dimensional input." ) if inputData is not None: partialLength = (inputData.shape[1] - transientTime) totalLength = inputData.shape[0] * partialLength timeseriesCount = inputData.shape[0] elif outputData is not None: partialLength = (outputData.shape[1] - transientTime) totalLength = outputData.shape[0] * partialLength timeseriesCount = outputData.shape[0] else: raise ValueError("Either input or output data must not to be None") self._X = B.empty((1 + self.n_input + self.n_reservoir, totalLength)) if (verbose > 0): bar = progressbar.ProgressBar(max_value=totalLength, redirect_stdout=True, poll_interval=0.0001) bar.update(0) for i in range(timeseriesCount): if inputData is not None: xx, yy = self.propagate(inputData[i], outputData[i], transientTime, verbose - 1) self._X[:, i * partialLength:(i + 1) * partialLength] = xx else: xx, yy = self.propagate(None, outputData[i], transientTime, verbose - 1) self._X[:, i * partialLength:(i + 1) * partialLength] = xx if (verbose > 0): bar.update(i) if (verbose > 0): bar.finish() #define the target values Y_target = B.empty((outputData.shape[2], totalLength)) for i in range(timeseriesCount): Y_target[:, i * partialLength:(i + 1) * partialLength] = self.out_inverse_activation( outputData[i]).T[:, transientTime:] if (self._solver == "pinv"): self._WOut = B.dot(Y_target, B.pinv(self._X)) #calculate the training prediction now train_prediction = self.out_activation((B.dot(self._WOut, self._X)).T) # elif (self._solver == "lsqr"): # X_T = self._X.T # self._WOut = B.dot(B.dot(Y_target, X_T),B.inv(B.dot(self._X,X_T) + self._regressionParameters[0]*B.identity(1+self.n_input+self.n_reservoir))) # """ # #alternative representation of the equation # Xt = X.T # A = np.dot(X, Y_target.T) # B = np.linalg.inv(np.dot(X, Xt) + regression_parameter*np.identity(1+self.n_input+self.n_reservoir)) # self._WOut = np.dot(B, A) # self._WOut = self._WOut.T # """ # #calculate the training prediction now # train_prediction = self.out_activation(B.dot(self._WOut, self._X).T) elif (self._solver in [ "sklearn_auto", "sklearn_lsqr", "sklearn_sag", "sklearn_svd" ]): mode = self._solver[8:] params = self._regressionParameters params["solver"] = mode self._ridgeSolver = Ridge(**params) self._ridgeSolver.fit(self._X.T, Y_target.T) #calculate the training prediction now train_prediction = self.out_activation( self._ridgeSolver.predict(self._X.T)) elif (self._solver in ["sklearn_svr", "sklearn_svc"]): self._ridgeSolver = SVR(**self._regressionParameters) self._ridgeSolver.fit(self._X.T, Y_target.T.ravel()) #calculate the training prediction now train_prediction = self.out_activation( self._ridgeSolver.predict(self._X.T)) #calculate the training error now #flatten the outputData outputData = outputData[:, transientTime:, :].reshape(totalLength, -1) training_error = B.sqrt(B.mean((train_prediction - outputData)**2)) return training_error
def fit( self, inputData, outputData, transientTime="AutoReduce", transientTimeCalculationEpsilon=1e-3, transientTimeCalculationLength=20, verbose=0, ): # check the input data if inputData.shape[0] != outputData.shape[0]: raise ValueError( "Amount of input and output datasets is not equal - {0} != {1}" .format(inputData.shape[0], outputData.shape[0])) nSequences = inputData.shape[0] trainingLength = inputData.shape[1] self._x = B.zeros((self.n_reservoir, 1)) # Automatic transient time calculations if transientTime == "Auto": transientTime = self.calculateTransientTime( inputData, outputData, transientTimeCalculationEpsilon, transientTimeCalculationLength, ) if transientTime == "AutoReduce": if (inputData is None and outputData.shape[1] == 1) or inputData.shape[1] == 1: transientTime = self.calculateTransientTime( inputData, outputData, transientTimeCalculationEpsilon, transientTimeCalculationLength, ) transientTime = self.reduceTransientTime( inputData, outputData, transientTime) else: print( "Transient time reduction is supported only for 1 dimensional input." ) self._X = B.zeros(( 1 + self.n_input + self.n_reservoir, nSequences * (trainingLength - transientTime), )) Y_target = B.zeros( (self.n_output, (trainingLength - transientTime) * nSequences)) if verbose > 0: bar = progressbar.ProgressBar(max_value=len(inputData), redirect_stdout=True, poll_interval=0.0001) bar.update(0) for n in range(len(inputData)): self._x = B.zeros((self.n_reservoir, 1)) self._X[:, n * (trainingLength - transientTime):(n + 1) * (trainingLength - transientTime), ] = self.propagate( inputData[n], transientTime=transientTime, verbose=0) # set the target values Y_target[:, n * (trainingLength - transientTime):(n + 1) * (trainingLength - transientTime), ] = np.tile( self.out_inverse_activation(outputData[n]), trainingLength - transientTime, ).T if verbose > 0: bar.update(n) if verbose > 0: bar.finish() if self._solver == "pinv": self._WOut = B.dot(Y_target, B.pinv(self._X)) # calculate the training prediction now train_prediction = self.out_activation((B.dot(self._WOut, self._X)).T) elif self._solver == "lsqr": X_T = self._X.T self._WOut = B.dot( B.dot(Y_target, X_T), B.inv( B.dot(self._X, X_T) + self._regressionParameters[0] * B.identity(1 + self.n_input + self.n_reservoir)), ) """ #alternative represantation of the equation Xt = X.T A = np.dot(X, Y_target.T) B = np.linalg.inv(np.dot(X, Xt) + regression_parameter*np.identity(1+self.n_input+self.n_reservoir)) self._WOut = np.dot(B, A) self._WOut = self._WOut.T """ # calculate the training prediction now train_prediction = self.out_activation( B.dot(self._WOut, self._X).T) elif self._solver in [ "sklearn_auto", "sklearn_lsqr", "sklearn_sag", "sklearn_svd", ]: mode = self._solver[8:] params = self._regressionParameters params["solver"] = mode self._ridgeSolver = Ridge(**params) self._ridgeSolver.fit(self._X.T, Y_target.T) # calculate the training prediction now train_prediction = self.out_activation( self._ridgeSolver.predict(self._X.T)) elif self._solver in ["sklearn_svr", "sklearn_svc"]: self._ridgeSolver = SVR(**self._regressionParameters) self._ridgeSolver.fit(self._X.T, Y_target.T.flatten()) # calculate the training prediction now train_prediction = self.out_activation( self._ridgeSolver.predict(self._X.T)) train_prediction = np.mean(train_prediction, 0) # calculate the training error now training_error = B.sqrt(B.mean((train_prediction - outputData.T)**2)) return training_error
def fit(self, inputData, outputData1, outputData2, transientTime="AutoReduce", transientTimeCalculationEpsilon=1e-3, transientTimeCalculationLength=20, verbose=0): #check the input data if self.n_input != 0: if len(inputData.shape) == 3 and len(outputData1.shape) > 1: #multiple time series are used with a shape (timeseries, time, dimension) -> (timeseries, time, dimension) if inputData.shape[0] != outputData1.shape[0]: raise ValueError( "Amount of input and output datasets is not equal - {0} != {1}" .format(inputData.shape[0], outputData1.shape[0])) if inputData.shape[1] != outputData1.shape[1]: raise ValueError( "Amount of input and output time steps is not equal - {0} != {1}" .format(inputData.shape[1], outputData1.shape[1])) else: if inputData.shape[0] != outputData1.shape[0]: raise ValueError( "Amount of input and output time steps is not equal - {0} != {1}" .format(inputData.shape[0], outputData1.shape[0])) else: if inputData is not None: raise ValueError( "n_input has been set to zero. Therefore, the given inputData will not be used." ) inputData = B.array(inputData) outputData1 = B.array(outputData1) outputData2 = B.array(outputData2) self._transientTime = transientTime self._esn1.resetState() self._esn2.resetState() total_length = inputData.shape[0] print("total_length ", total_length) aggregated_y1 = B.empty((outputData1.shape)) aggregated_y2 = B.empty((outputData2.shape)) #put pixels and switch data together inputDataWithFeedback = B.zeros( (total_length, self.n_input + self._n_output2)) inputDataWithFeedback[:, :self.n_input] = inputData inputDataWithFeedback[:, self.n_input:] = outputData2 X1, _ = self._esn1.propagate(inputData=inputDataWithFeedback, outputData=outputData1, transientTime=transientTime, verbose=verbose - 1) self._esn1._X = X1 Y_target = self.out_inverse_activation(outputData1).T self._esn1._WOut = B.dot(Y_target, B.pinv(X1)) aggregated_y1 = self.out_activation((B.dot(self._esn1._WOut, X1)).T) training_error1 = B.sqrt( B.mean((aggregated_y1.reshape( (total_length, self._n_output1)) - outputData1)**2)) training_error2 = 0 training_error1 = B.sqrt(B.mean((aggregated_y1 - outputData1)**2)) training_error2 = B.sqrt(B.mean((aggregated_y2 - outputData2)**2)) return training_error1, training_error2