# J_r 残差のヤコビアン(m×n行列、全要素ゼロで初期化) J_r = np.zeros(( len( theFullPNs['f'] ), len( theFullPNs['b'] ))) J_r_next = copy.deepcopy( J_r ) # βの現在値のリスト p = [] for b in theFullPNs['b']: p.append( PARAMETERS[ b ] ) # トレーニングデータを格納した辞書 target_data_dict = {} for FullPN, ECDFileName in CURVE_DATA_DICT.items(): aTimeCouse = ECDDataFile() aTimeCouse.load( os.sep.join(( CURVE_DATA_DIR.rstrip( os.sep ), ECDFileName )) ) target_data_dict[ FullPN ] = getTargetDataPoints( aTimeCouse.getData(), T_START, T_END, T_INTERVAL ) """ for FullPN, tc in target_data_dict.items(): print "\n" + FullPN for dp in tc: print "{} : {}".format( dp[0], dp[1] ) """ # -------------------------------------------------------- # (3) 反復計算 # -------------------------------------------------------- beta_prev = copy.deepcopy( beta_dict ) for i in range( MAX_GENERATION ):
# J_r 残差のヤコビアン(m×n行列、全要素ゼロで初期化) J_r = np.zeros((len(theFullPNs['f']), len(theFullPNs['b']))) J_r_next = copy.deepcopy(J_r) # βの現在値のリスト p = [] for b in theFullPNs['b']: p.append(PARAMETERS[b]) # トレーニングデータを格納した辞書 target_data_dict = {} for FullPN, ECDFileName in CURVE_DATA_DICT.items(): aTimeCouse = ECDDataFile() aTimeCouse.load(os.sep.join((CURVE_DATA_DIR.rstrip(os.sep), ECDFileName))) target_data_dict[FullPN] = getTargetDataPoints(aTimeCouse.getData(), T_START, T_END, T_INTERVAL) """ for FullPN, tc in target_data_dict.items(): print "\n" + FullPN for dp in tc: print "{} : {}".format( dp[0], dp[1] ) """ # -------------------------------------------------------- # (3) 反復計算 # -------------------------------------------------------- LAMBDA = LAMBDA_0 beta_prev = copy.deepcopy(beta_dict) S_prev = float('inf')