Exemple #1
0
def test_jellyroll_subplot():
    data = ecm.load_cases(root)
    case_index = 0
    amp_index = 0
    var_index = 0
    case_folder = children[case_index]
    amps = ecm.get_amp_cases(case_folder)
    case = list(data.keys())[case_index]
    ecm.jellyroll_subplot(data,
                          case,
                          amps[amp_index],
                          var=var_index,
                          soc_list=[[1.0, 0.99], [0.98, 0.97]],
                          global_range=False,
                          dp=1)
    if close_plots:
        plt.close('all')
    wrk.clear()
    assert 1 == 1
def load_all_data():
    config = configparser.ConfigParser()
    net = ecm.get_net()
    weights = ecm.get_weights(net)
    cases = get_cases()
    amps = ecm.get_amp_cases()
    variables = ecm.get_saved_var_names()
    data = {}
    for ci in range(len(cases.keys())):
        case_folder = os.path.join(root, cases[ci]['file'])
        data[ci] = {}
        config.read(os.path.join(case_folder, 'config.txt'))
        data[ci]['config'] = ecm.config2dict(config)
        for amp in amps:
            amp_folder = os.path.join(case_folder, str(amp) + 'A')
            data[ci][amp] = {}
            for vi, v in enumerate(variables):
                data[ci][amp][vi] = {}
                temp = ecm.load_and_amalgamate(amp_folder, v)
                if temp is not None:
                    if vi == 0:
                        check_nans = np.any(np.isnan(temp), axis=1)
                        if np.any(check_nans):
                            print('Nans removed from', amp_folder)
                    if np.any(check_nans):
                        temp = temp[~check_nans, :]
                    data[ci][amp][vi]['data'] = temp
                    means = np.zeros(temp.shape[0])
                    for t in range(temp.shape[0]):
                        (mean, std_dev) = ecm.weighted_avg_and_std(
                            temp[t, :], weights)
                        means[t] = mean
                    data[ci][amp][vi]['mean'] = means
                    data[ci][amp][vi]['min'] = np.min(temp, axis=1)
                    data[ci][amp][vi]['max'] = np.max(temp, axis=1)
            if temp is not None:
                t_hrs = data[ci][amp][10]['data'][:, 0]
                cap = t_hrs * amp
                data[ci][amp]['capacity'] = cap
    return data

plt.style.use('seaborn-dark')
cmap = sns.color_palette("rocket")
warnings.filterwarnings("ignore")

root = 'D:\\pybamm_pnm_results\\46800'
save_im_path = 'D:\\pybamm_pnm_results\\46800\\figures'
plt.close('all')

savefigs = True

tab_1 = [0, 1, 2, 3, ]
tab_tesla = [4, 5, 6, 7, ]

amps = ecm.get_amp_cases()
d = ecm.load_all_data()
cases = ecm.get_cases()
soc_list = [[0.9, 0.8, 0.7],
            [0.6, 0.5, 0.4],
            [0.3, 0.2, 0.1]]
mini_soc_list = [[0.8, 0.6],
                 [0.4, 0.2]]
grp = 'neg'
data = d[0][17.5][0]['data']


def find_best_fit(y, report_results=False):
    # Set up list of candidate distributions to use
    # See https://docs.scipy.org/doc/scipy/reference/stats.html for more
    #y = data_spm.copy()
Exemple #4
0
def _load(filepath):
    data = ecm.load_cases(filepath)
    cases = list(data.keys())
    amps = ecm.get_amp_cases(os.path.join(filepath, cases[0]))
    return data, amps, cases