Exemple #1
0
def test_sequence_dset_vanilla():
    D1 = DebugDataset(size=10)
    D2 = DebugDataset(size=10)
    D3 = DebugDataset(size=10)

    D = D1 + D2 + D3

    S = SequenceDataset(D, 3, fid_key="label1")

    assert len(S) == (3 * (10 - 2))
    assert len(S.labels["label1"]) == (3 * (10 - 2))

    d = S[0]
    ref = {
        "val": [0, 1, 2],
        "other": [0, 1, 2],
        "index_": 0,
        "dataset_index_": [0, 0, 0],
    }

    assert d == ref

    l = np.array(S.labels["label1"][:3])
    refl = np.array([[0, 1, 2], [1, 2, 3], [2, 3, 4]])

    assert np.all(l == refl)
Exemple #2
0
def test_get_seq():
    config = {
        "dataset": "edflow.data.believers.sequence.getSeqDataset",
        "seqdataset": {
            "dataset": "edflow.debug.ConfigDebugDataset",
            "length": 3,
            "step": 1,
            "fid_key": "label1",
        },
        "size": 10,
    }

    S1 = getSeqDataset(config)

    D = DebugDataset(size=10)
    S2 = SequenceDataset(D, 3, fid_key="label1")

    assert len(S1) == len(S2)
    assert len(S1.labels["label1"]) == len(S2.labels["label1"])
    assert len(S1) == len(S1.labels["label1"])

    s1 = S1[0]
    s2 = S2[0]

    assert s1 == s2

    assert np.all(S1.labels["label1"] == S2.labels["label1"])
Exemple #3
0
def test_unseq_vanilla():

    D1 = DebugDataset(size=10)
    D2 = DebugDataset(size=10)

    D = D1 + D2

    S = SequenceDataset(D, 3, fid_key="label1")

    U = UnSequenceDataset(S)

    print(np.shape(U.labels["label1"]))

    assert len(U) == len(S) * 3
    assert len(U.labels["label1"]) == len(S.labels["label1"]) * 3

    du = U[[0, 1, 2]]
    ds = S[0]

    for k in ds.keys():
        if k == "index_":
            continue
        for i in range(3):
            print(k, i)
            val_u = du[i][k]
            val_s = ds[k][i]

            assert val_s == val_u
Exemple #4
0
def test_seq_offset_fid_strat_reset():
    D1 = DebugDataset(size=10)
    D2 = DebugDataset(size=12, offset=3)

    D = D1 + D2

    S = SequenceDataset(D, 3, fid_key="label1", strategy="reset")

    assert len(S) == (len(D1) - 2 + len(D2) - 2)
Exemple #5
0
def test_seq_wrong_fid_len():
    D1 = DebugDataset(size=10)
    D2 = DebugDataset(size=10)

    D = D1 + D2
    D.labels["label1"] = np.array(D.labels["label1"])[:10]

    with pytest.raises(ValueError):
        S = SequenceDataset(D, 3, fid_key="label1")
Exemple #6
0
def test_seq_wrong_fid_dtype():
    D1 = DebugDataset(size=10)
    D2 = DebugDataset(size=10)

    D = D1 + D2
    D.labels["label1"] = np.array(D.labels["label1"], dtype=float)

    with pytest.raises(TypeError):
        S = SequenceDataset(D, 3, fid_key="label1")
Exemple #7
0
def test_sequence_dset_offset_fid():
    D1 = DebugDataset(size=10)
    D2 = DebugDataset(size=10)
    D3 = DebugDataset(size=10, offset=3)
    D4 = DebugDataset(size=10, offset=3)

    D = D1 + D2 + D3 + D4

    labels = np.array(D.labels["label1"])
    diffs = labels[1:] - labels[:-1]
    idxs = np.where(diffs <= 0)[0] + 1

    with pytest.raises(ValueError):
        S = SequenceDataset(D, 3, fid_key="label1")
Exemple #8
0
    def __init__(self, config, mode="all"):
        assert mode in ["train", "validation", "all"
                        ], f"Should be train, validation or all, got {mode}"
        self.config = config
        self.sequence_length = 30
        self.sc = SequenceDataset(MPII_Sequence(config),
                                  self.sequence_length,
                                  step=config["sequence_step_size"])
        self.train = int(config["train_size"] * len(self.sc))
        self.test = 1 - self.train
        self.sigma = config["sigma"]
        self.augmentation = config["augmentation"]
        self.aug_factor = 0.5
        self.resize = iaa.Resize(self.config["resize_to"])
        if self.augmentation:
            self.seq = iaa.Sequential(
                [
                    # iaa.Sometimes(self.aug_factor, iaa.AdditiveGaussianNoise(scale=0.05 * 255)),
                    # iaa.Sometimes(self.aug_factor, iaa.SaltAndPepper(0.01, per_channel=False)),
                    # iaa.Sometimes(self.aug_factor, iaa.CoarseDropout(0.01, size_percent=0.5)),
                    iaa.Fliplr(self.aug_factor),
                    iaa.Flipud(self.aug_factor),
                    # iaa.Sometimes(self.aug_factor, iaa.GaussianBlur(sigma=(0, 3.0))),
                    # iaa.LinearContrast((0.75, 1.5)),
                    # Convert each image to grayscale and then overlay the
                    # result with the original with random alpha. I.e. remove
                    # colors with varying strengths.
                    # iaa.Grayscale(alpha=(0.0, 1.0)),
                ],
                random_order=True)

        if mode != "all":
            # split_indices = np.arange(self.train) if mode == "train" else np.arange(self.train + 1, len(self.sc))
            dset_indices = np.arange(len(self.sc))
            train_indices, test_indices = sklearn.model_selection.train_test_split(
                dset_indices,
                train_size=float(config["train_size"]),
                random_state=int(config["random_state"]))
            if mode == "train":
                self.data = SubDataset(self.sc, train_indices)
            else:
                self.data = SubDataset(self.sc, test_indices)
        else:
            self.data = self.sc
Exemple #9
0
    #                                        for k, v in d.items()]))

    from edflow.debug import DebugDataset

    D = DebugDataset()

    def labels(data, i):
        return {"fid": i}

    D = ExtraLabelsDataset(D, labels)
    print("D")
    for k, v in D.labels.items():
        print(k)
        print(np.shape(v))

    S = SequenceDataset(D, 2)
    print("S")
    for k, v in S.labels.items():
        print(k)
        print(np.shape(v))

    S = SubDataset(S, [2, 5, 10])
    print("Sub")
    for k, v in S.labels.items():
        print(k)
        print(np.shape(v))

    U = UnSequenceDataset(S)
    print("U")
    for k, v in U.labels.items():
        print(k)
    def __init__(self, config, mode="all"):
        assert mode in ["train", "validation", "all"], f"Should be train, validation or all, got {mode}"
        self.config = config
        self.sequence_length = 2  # if config.get("sequence_length", False) == False else config["sequence_length"]
        self.sc = SequenceDataset(Animal_Sequence(config), self.sequence_length, step=config["sequence_step_size"])
        # works if dataroot like "VOC2011/cats_meta"
        # TODO PROBABLY NOT CORRECT HERE
        self.animal = config["dataroot"].split("/")[1].split("_")[0]

        self.train = int(config["train_size"] * len(self.sc))
        self.test = 1 - self.train
        self.sigma = config["sigma"]
        self.augmentation = config["augmentation"]
        self.aug_factor = 0.5

        self.logger = get_logger(self)

        self.resize = iaa.Resize(self.config["resize_to"])
        if self.augmentation:
            self.seq = iaa.Sequential([
                iaa.Sometimes(self.aug_factor, iaa.AdditiveGaussianNoise(scale=0.05 * 255)),
                iaa.Sometimes(self.aug_factor, iaa.SaltAndPepper(0.01, per_channel=False)),
                iaa.Sometimes(self.aug_factor, iaa.CoarseDropout(0.01, size_percent=0.5)),
                iaa.Fliplr(self.aug_factor),
                iaa.Flipud(self.aug_factor),
                iaa.Sometimes(self.aug_factor, iaa.GaussianBlur(sigma=(0, 3.0))),
                iaa.LinearContrast((0.75, 1.5)),
                # Convert each image to grayscale and then overlay the
                # result with the original with random alpha. I.e. remove
                # colors with varying strengths.
                iaa.Grayscale(alpha=(0.0, 1.0)),
            ], random_order=True)

        self.joints = [
            [2, 0],  # Nose - L_Eye
            [2, 1],  # Nose - R_Eye
            [0, 3],  # L_Eye - L_EarBase
            [1, 4],  # R_Eye - R_EarBase
            [2, 8],  # Nose - Throat
            [8, 9],  # Throat - L_F_Elbow
            [8, 5],  # Throat - R_F_Elbow
            [9, 16],  # L_F_Elbow - L_F_Knee
            [16, 6],  # L_F_Knee - L_F_Paw
            [5, 17],  # R_F_Elbow - R_F_Knee
            [17, 7],  # R_F_Knee - R_F_Paw
            [14, 18],  # L_B_Elbow - L_B_Knee
            [18, 13],  # L_B_Knee - L_B_Paw
            [15, 19],  # R_B_Elbow - R_B_Knee
            [19, 13],  # R_B_Knee - R_B_Paw
            [10, 11],  # Withers - TailBase
        ]

        if mode != "all":
            # split_indices = np.arange(self.train) if mode == "train" else np.arange(self.train + 1, len(self.sc))
            dset_indices = np.arange(len(self.sc))
            train_indices, test_indices = sklearn.model_selection.train_test_split(dset_indices,
                                                                                   train_size=float(
                                                                                       config["train_size"]),
                                                                                   random_state=int(
                                                                                       config["random_state"]))
            if mode == "train":
                self.data = SubDataset(self.sc, train_indices)
            else:
                self.data = SubDataset(self.sc, test_indices)
        else:
            self.data = self.sc
Exemple #11
0
def test_seq_offset_fid_strat_unknown():
    D = DebugDataset(size=12, offset=3)

    with pytest.raises(ValueError):
        S = SequenceDataset(D, 3, fid_key="label1", strategy="recolorize")