def __call__(self, results): """Call function. Args: results (dict): A dict containing the necessary information and data for augmentation. Returns: dict: A dict containing the processed data and information. """ if self.file_client is None: self.file_client = FileClient(self.io_backend, **self.kwargs) filepath = str(results[f'{self.key}_path']) img_bytes = self.file_client.get(filepath) img = imfrombytes(img_bytes, flag=self.flag, channel_order=self.channel_order) # HWC if len(img.shape) == 2: img = np.expand_dims(img, axis=2) results[self.key] = img results[f'{self.key}_path'] = filepath results[f'{self.key}_ori_shape'] = img.shape if self.save_original_img: results[f'ori_{self.key}'] = img.copy() return results
def __call__(self, results): """Call function. Args: results (dict): A dict containing the necessary information and data for augmentation. Returns: dict: A dict containing the processed data and information. """ if self.file_client is None: self.file_client = FileClient(self.io_backend, **self.kwargs) filepaths = results[f'{self.key}_path'] if not isinstance(filepaths, list): raise TypeError( f'filepath should be list, but got {type(filepaths)}') filepaths = [str(v) for v in filepaths] imgs = [] shapes = [] if self.save_original_img: ori_imgs = [] def get_cache_key(path): l = path.split("/") return os.path.join(l[-2], l[-1]) global cache_dict for filepath in filepaths: if self.use_mem: key = get_cache_key(filepath) if cache_dict.__contains__(key): img_bytes = cache_dict.get(key) else: img_bytes = self.file_client.get(filepath) cache_dict[key] = img_bytes else: img_bytes = self.file_client.get(filepath) img = imfrombytes(img_bytes, flag=self.flag) # HWC, BGR if img.ndim == 2: img = np.expand_dims(img, axis=2) imgs.append(img) shapes.append(img.shape) if self.save_original_img: ori_imgs.append(img.copy()) results[self.key] = imgs results[f'{self.key}_path'] = filepaths results[f'{self.key}_ori_shape'] = shapes if self.save_original_img: results[f'ori_{self.key}'] = ori_imgs return results
def __call__(self, results): """Call function. Args: results (dict): A dict containing the necessary information and data for augmentation. Returns: dict: A dict containing the processed data and information. """ if self.file_client is None: self.file_client = FileClient(self.io_backend, **self.kwargs) filepaths = results[f'{self.key}_path'] if not isinstance(filepaths, list): raise TypeError( f'filepath should be list, but got {type(filepaths)}') filepaths = [str(v) for v in filepaths] imgs = [] shapes = [] if self.save_original_img: ori_imgs = [] for filepath in filepaths: if self.make_bin: bin_path = get_bin_path(filepath) if os.path.isfile(bin_path): img = read_bin(bin_path) else: raise NotImplementedError( "please make sure all pkl file exist first") # img_bytes = self.file_client.get(filepath) # img = imfrombytes(img_bytes, flag=self.flag, channel_order=self.channel_order) # HWC, BGR # make_ndarray_bin(img, bin_path) else: img_bytes = self.file_client.get(filepath) img = imfrombytes(img_bytes, flag=self.flag, channel_order=self.channel_order) # HWC, BGR if img.ndim == 2: img = np.expand_dims(img, axis=2) imgs.append(img) shapes.append(img.shape) if self.save_original_img: ori_imgs.append(img.copy()) results[self.key] = imgs results[f'{self.key}_path'] = filepaths results[f'{self.key}_ori_shape'] = shapes if self.save_original_img: results[f'ori_{self.key}'] = ori_imgs return results
class LoadImageFromFile(object): """Load image from file. Args: io_backend (str): io backend where images are store. Default: 'disk'. key (str): Keys in results to find corresponding path. Default: 'gt'. flag (str): Loading flag for images. Default: 'color'. channel_order (str): Order of channel, candidates are 'bgr' and 'rgb'. Default: 'bgr'. save_original_img (bool): If True, maintain a copy of the image in `results` dict with name of `f'ori_{key}'`. Default: False. kwargs (dict): Args for file client. """ def __init__(self, io_backend='disk', key='gt', flag='color', channel_order='bgr', save_original_img=False, **kwargs): self.io_backend = io_backend self.key = key self.flag = flag self.save_original_img = save_original_img self.channel_order = channel_order self.kwargs = kwargs self.file_client = None def __call__(self, results): """Call function. Args: results (dict): A dict containing the necessary information and data for augmentation. Returns: dict: A dict containing the processed data and information. """ if self.file_client is None: self.file_client = FileClient(self.io_backend, **self.kwargs) filepath = str(results[f'{self.key}_path']) img_bytes = self.file_client.get(filepath) img = imfrombytes(img_bytes, flag=self.flag, channel_order=self.channel_order) # HWC results[self.key] = img results[f'{self.key}_path'] = filepath results[f'{self.key}_ori_shape'] = img.shape if self.save_original_img: results[f'ori_{self.key}'] = img.copy() return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += ( f'(io_backend={self.io_backend}, key={self.key}, ' f'flag={self.flag}, save_original_img={self.save_original_img})') return repr_str
class LoadImageFromFileList(LoadImageFromFile): """Load image from file list. It accepts a list of path and read each frame from each path. A list of frames will be returned. Args: io_backend (str): io backend where images are store. Default: 'disk'. key (str): Keys in results to find corresponding path. Default: 'gt'. flag (str): Loading flag for images. Default: 'color'. save_original_img (bool): If True, maintain a copy of the image in `results` dict with name of `f'ori_{key}'`. Default: False. kwargs (dict): Args for file client. """ def __call__(self, results): """Call function. Args: results (dict): A dict containing the necessary information and data for augmentation. Returns: dict: A dict containing the processed data and information. """ if self.file_client is None: self.file_client = FileClient(self.io_backend, **self.kwargs) filepaths = results[f'{self.key}_path'] if not isinstance(filepaths, list): raise TypeError( f'filepath should be list, but got {type(filepaths)}') filepaths = [str(v) for v in filepaths] imgs = [] shapes = [] if self.save_original_img: ori_imgs = [] for filepath in filepaths: img_bytes = self.file_client.get(filepath) img = imfrombytes(img_bytes, flag=self.flag) # HWC, BGR if img.ndim == 2: img = np.expand_dims(img, axis=2) imgs.append(img) shapes.append(img.shape) if self.save_original_img: ori_imgs.append(img.copy()) results[self.key] = imgs results[f'{self.key}_path'] = filepaths results[f'{self.key}_ori_shape'] = shapes if self.save_original_img: results[f'ori_{self.key}'] = ori_imgs return results