Exemple #1
0
def check(dist):

    q_s = Gamma(a_s, b_s)
    q_v = Gamma(a_v, b_v)

    sess = tf.InteractiveSession()
    init = tf.global_variables_initializer()
    init.run()
    no_sample = 100

    s_sample = q_s.sample(no_sample).eval()
    v_sample = q_v.sample(no_sample).eval()

    n = np.zeros([C_u, C_i])
    result = np.zeros([C_u, C_i])
    n_expected = np.zeros([C_u, C_i])

    for i in range(0, no_sample):
        n = np.add(n, np.matmul(s_sample[i], np.transpose(v_sample[i])))
    n_expected = n / no_sample
    #mean of poisson is rate param. So this is fine.

    #sample response
    #distribution specific
    result = dist_mean(dist, n_expected)

    return mae(result)
Exemple #2
0
def _test(alpha, beta, n):
  x = Gamma(alpha=alpha, beta=beta)
  val_est = get_dims(x.sample(n))
  val_true = n + get_dims(alpha)
  assert val_est == val_true
Exemple #3
0
def _test(alpha, beta, n):
    x = Gamma(alpha=alpha, beta=beta)
    val_est = get_dims(x.sample(n))
    val_true = n + get_dims(alpha)
    assert val_est == val_true
Exemple #4
0
# predictive check
n_rep = 100  # number of replicated datasets we generate
holdout_gen = np.zeros((n_rep, x_train.shape[0], x_train.shape[1]))

for i in range(n_rep):
    x_generated = x_post.sample().eval()

    # look only at the heldout entries
    holdout_gen[i] = np.multiply(x_generated, holdout_mask)

n_eval = 10  # we draw samples from the inferred Z and W
obs_ll = []
rep_ll = []
pbar = Progbar(n_eval)
for j in range(1, n_eval + 1):
    z1_sample = z1_post.sample().eval()
    W0_sample = qW0.sample().eval()

    holdoutmean_sample = np.multiply(z1_sample.dot(W0_sample), holdout_mask)
    obs_ll.append(
        np.mean(np.ma.masked_invalid(
            stats.poisson.logpmf(np.array(x_vad, dtype=int),
                                 holdoutmean_sample)),
                axis=1))

    rep_ll.append(
        np.mean(np.ma.masked_invalid(
            stats.poisson.logpmf(holdout_gen, holdoutmean_sample)),
                axis=2))
    pbar.update(j)