def _get_backbone_model(self):
     backbone_model = None
     if self.backbone_name == 'resnet18':
         backbone_model = ResNet18(input_shape=self.input_shape, include_top=False, weights='imagenet')
     if self.backbone_name == 'resnet34':
         backbone_model = ResNet34(input_shape=self.input_shape, include_top=False, weights='imagenet')
     elif self.backbone_name == 'mobilenetv2':
         backbone_model = MobileNetV2(input_shape=self.input_shape, include_top=False, weights='imagenet')
     elif self.backbone_name == 'efficientnetb0':
         backbone_model = EfficientNetB0(input_shape=self.input_shape, include_top=False, weights='imagenet')
     elif self.backbone_name == 'efficientnetb1':
         backbone_model = EfficientNetB1(input_shape=self.input_shape, include_top=False, weights='imagenet')
     elif self.backbone_name == 'efficientnetb3':
         backbone_model = EfficientNetB3(input_shape=self.input_shape, include_top=False, weights='imagenet')
     elif self.backbone_name == 'efficientnetb5':
         backbone_model = EfficientNetB5(input_shape=self.input_shape, include_top=False, weights='imagenet')
     elif self.backbone_name == 'densenet':
         backbone_model = DenseNet121(input_shape=self.input_shape, include_top=False, weights='imagenet')
     return backbone_model
Exemple #2
0
    def __init__(self, model_size , imag_size, num_cls):
    
        try: 
            if model_size == "B0": model = EfficientNetB0(weights = 'imagenet', input_shape = (imag_size,imag_size,3), include_top = False)
            elif model_size == "B3": model = EfficientNetB3(weights = 'imagenet', input_shape = (imag_size,imag_size,3), include_top = False)
            elif model_size == "B5": model = EfficientNetB5(weights = 'imagenet', input_shape = (imag_size,imag_size,3), include_top = False)
            elif model_size == "B7": model = EfficientNetB7(weights = 'imagenet', input_shape = (imag_size,imag_size,3), include_top = False)

            ENet_out = model.output
            ENet_out = Flatten()(ENet_out)


            Hidden1_in = Dense(1024, activation="relu")(ENet_out)
            Hidden1_in = Dropout(0.5)(Hidden1_in)

            predictions = Dense(units = num_cls, activation="softmax")(Hidden1_in)
            self.model_f = Model(input = model.input, output = predictions)
            self.model_f.compile(optimizers.Adam(lr=0.0001, beta_1=0.9, beta_2=0.999, epsilon=1e-08), loss='categorical_crossentropy', metrics=[metrics.mae, metrics.categorical_accuracy])
        
        except:
            print("only B0/B3/B5/B7 allowed")
Exemple #3
0
    def get_model(self,
                  class_names,
                  model_name="EfficientNetB3",
                  use_base_weights=True,
                  weights_path=None,
                  input_shape=None):

        if use_base_weights is True:
            base_weights = "imagenet"
        else:
            base_weights = None

        if input_shape is None:
            input_shape = self.models_[model_name]["input_shape"]

        img_input = Input(shape=input_shape)

        base_model = EfficientNetB3(include_top=False,
                                    input_tensor=img_input,
                                    input_shape=input_shape,
                                    weights=base_weights,
                                    pooling="avg")
        x = base_model.output
        predictions = Dense(len(class_names),
                            activation="sigmoid",
                            name="predictions")(x)
        model = Model(inputs=img_input, outputs=predictions)

        if weights_path == "":
            weights_path = None

        if weights_path is not None:
            print(f"load model weights_path: {weights_path}")
            model.load_weights(weights_path)

        return model
Exemple #4
0
                                                    target_size=(img_height,
                                                                 img_width),
                                                    batch_size=n_batch_size,
                                                    shuffle=True,
                                                    subset='training')

valid_generator = train_datagen.flow_from_directory('./train/data',
                                                    target_size=(img_height,
                                                                 img_width),
                                                    batch_size=n_batch_size,
                                                    shuffle=True,
                                                    subset='validation')

# 以訓練好的 EfficientNetB3 為基礎來建立模型
net = EfficientNetB3(input_shape=(img_height, img_width, 3),
                     include_top=False,
                     weights='imagenet',
                     pooling='max')

# 增加 Dense layer 與 softmax 產生個類別的機率值
x = net.output
# x = Dense(1024,  activation='relu')(x)
# x = Dropout(0.5)(x)
# x = Dense(128,  activation='relu')(x)
output_layer = Dense(3, activation='softmax', name='softmax')(x)

# 設定要進行訓練的網路層
model = Model(inputs=net.input, outputs=output_layer)

print('\n')
print('Trainable layers:')
for x in model.trainable_weights:
    def trainModel(self):
        
        print(os.listdir(self.__data_directory))
        class_nb = len(os.listdir(self.__data_directory))
        

        train_generator = self.__image_generator.flow_from_directory(
            directory = self.__data_directory,
            target_size=(self.__image_size,self.__image_size),
            subset="training",
            batch_size=self.__batch_size,
            shuffle=True,
            class_mode= "categorical",
            seed=42
        )
        
        val_generator = self.__image_generator.flow_from_directory(
            directory = self.__data_directory,
            target_size=(self.__image_size,self.__image_size),
            subset="validation",
            batch_size=self.__batch_size,
            shuffle=True,
            class_mode= "categorical",
            seed=42
        )
        
        if self.__model_type== "EfficientNetB3":
            pretrainedModel = EfficientNetB3(
                weights='imagenet',
                input_shape=(self.__image_size, self.__image_size, 3),
                include_top=False,
                pooling='max'
            )
        else :
            raise Exception('{} model is not a member of our available pretrained models'.format(self.__model_type)) 
        
        
        
        model = Sequential()
        model.add(pretrainedModel)
        model.add(Dense(units = 120, activation='relu'))
        model.add(Dense(units = 120, activation='relu'))
        model.add(Dropout(0.5))
        model.add(Dense(units = class_nb, activation='softmax'))
        model.summary()
        
        model.compile(
                optimizer=Adam(lr=0.0001, clipnorm=1, clipvalue=5), 
                loss='categorical_crossentropy', 
                metrics=['accuracy']
                )
        
        logdir = "logs/" + datetime.now().strftime("%Y%m%d-%H%M%S")+ "_" + self.__model_name
        callbacks = [
                #EarlyStopping(monitor='val_loss', patience= 10),
                     ModelCheckpoint(filepath= self.__model_name + '_best_model.h5', monitor='val_loss', save_best_only=True),
                     TensorBoard(log_dir=logdir)]
        
        history = model.fit_generator(
            train_generator,
            epochs = self.__epoch_number,
            #steps_per_epoch = 20,
            validation_data = val_generator,
            #validation_steps = 5,
            callbacks = callbacks
        )
        
        acc = history.history['accuracy']
        val_acc = history.history['val_accuracy']
        loss = history.history['loss']
        val_loss = history.history['val_loss']
        
        epochs = range(1,len(acc) + 1)
        
        fig=plt.figure(figsize=(15, 5))
        fig.add_subplot(1, 2, 1)
        plt.plot(epochs,acc,'g',label = 'Training Accuracy')
        plt.plot(epochs,val_acc,'r',label = 'Validation Accuracy')
        plt.title('Training and Validation Accuracy')
        plt.legend()
        
        fig.add_subplot(1, 2, 2)
        plt.plot(epochs,loss,'g',label = 'Training loss')
        plt.plot(epochs,val_loss,'r',label = 'Validation Loss')
        plt.title('Training and Validation Loss')
        plt.legend()
        
        plt.show()
        
        # serialize weights to HDF5
        model.save(self.__model_name +'.h5')
        print("Saved final model : " + self.__model_name +'.h5')
        print("Saved best model considering val_loss : " + self.__model_name + '_best_model.h5')
Exemple #6
0
 def test_efficientnet(self):
     model = EfficientNetB3(weights=None)
     vis = KerasArchitectureVisualizer()
     vis.visualize(model)
                                              batch_size=128,
                                              shuffle=True,
                                              class_mode="binary")

val_generator = datagen.flow_from_dataframe(dataframe=df,
                                            directory=data_dir,
                                            x_col="filename",
                                            y_col="category",
                                            target_size=(32, 32),
                                            subset="validation",
                                            batch_size=64,
                                            shuffle=True,
                                            class_mode="binary")

efficient_net = EfficientNetB3(weights='imagenet',
                               input_shape=(32, 32, 3),
                               include_top=False,
                               pooling='max')

model = Sequential()
model.add(efficient_net)
model.add(Dense(units=120, activation='relu'))
model.add(Dense(units=120, activation='relu'))
model.add(Dense(units=1, activation='sigmoid'))
model.summary()

model.compile(optimizer=Adam(lr=0.0001),
              loss='binary_crossentropy',
              metrics=['accuracy'])

filename = './checkpoints/efficient-weights.h5'
log_dir = "./logs/fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")