import numpy as np from efficientroutes.model import Bicyclist, Route, Trip bicyclist = Bicyclist() flatNoStopData = np.recfromcsv('../data/flat_no_stops.csv') stopLocations = [] for i, device in enumerate(flatNoStopData['traffic_control']): if device != '' and device != False: stopLocations.append(flatNoStopData['distance'][i]) flatNoStopRoute = Route(flatNoStopData['distance'], flatNoStopData['elevation'], flatNoStopData['speed_limit'], stopLocations=np.array(stopLocations)) flatNoStopTrip = Trip(bicyclist, flatNoStopRoute) flatNoStopTrip.solve() print "===============================" print "Flat with no stops route stats:" print "===============================" flatNoStopTrip.stats() flatNoStopFig = flatNoStopTrip.plot() flatNoStopFig.suptitle('Flat, No Stops') flatNoStopFig.set_figheight(8.0) flatNoStopFig.savefig('../data/flat-no-stops.png', dpi=200) flatNoStopFig.show() flatWithStopData = np.recfromcsv('../data/flat_with_stops.csv') stopLocations = [] for i, device in enumerate(flatWithStopData['traffic_control']): if device != '' and device != False:
bicyclist = Bicyclist() routes = {} for way in ['third', 'fifth', 'eighth']: routeData = np.recfromcsv('../data/fifth_to_hutchinson_via_' + way + '.csv') stopLocations = [] for i, device in enumerate(routeData['traffic_control']): if device != '': stopLocations.append(routeData['distance'][i]) routes[way] = Route(routeData['distance'], routeData['elevation'], routeData['speed_limit'], stopLocations=np.array(stopLocations)) for k, v in routes.items(): trip = Trip(bicyclist, v) trip.solve() string = '{} route stats:'.format(k.capitalize()) print "=" * len(string) print string print "=" * len(string) trip.stats() fig = trip.plot() fig.suptitle('Via {}'.format(k.capitalize())) fig.set_figheight(8.0) fig.savefig('../data/fith-to-hutchinson-via-' + k + '.png', dpi=200) fig.show()
bicyclist = Bicyclist() # Load in the the planned bicycle route data and process the traffic controls # column. bicycleRouteData = np.recfromcsv('../data/columbia_river_crossing_bicycle.csv') stopLocations = [] for i, device in enumerate(bicycleRouteData['traffic_control']): if device != '': stopLocations.append(bicycleRouteData['distance'][i]) bicycleRoute = Route(bicycleRouteData['distance'], bicycleRouteData['elevation'], bicycleRouteData['speed_limit'], stopLocations=np.array(stopLocations)) # Setup and compute the results for the trip across the planned bicycle route. bicycleTrip = Trip(bicyclist, bicycleRoute) bicycleTrip.solve() print "====================" print "Bicycle route stats:" print "====================" bicycleTrip.stats() bicycleFig = bicycleTrip.plot() bicycleFig.suptitle('Bicycle Route') bicycleFig.set_figheight(8.0) bicycleFig.savefig('../data/columbia_river_crossing_bicycle.png', dpi=200) bicycleFig.show() # Load in the data for the automobile path. autoRouteData = np.recfromcsv('../data/columbia_river_crossing_auto.csv') autoRoute = Route(autoRouteData['distance'], autoRouteData['elevation'], autoRouteData['speed_limit'] - 17.88)