Exemple #1
0
def MAPI_soc_data_object_with_DOSCAR(
    MAPI_settings_object
):  # MAPI spin orbit coupling calculation data with doscar loaded
    data = inputs.DataVasp(os.path.join(os.path.dirname(__file__),
                                        'data_vasp/MAPI_soc_OUTCAR'),
                           os.path.join(os.path.dirname(__file__),
                                        'data_vasp/MAPI_soc_PROCAR'),
                           ignore=216)
    data.parse_DOSCAR(
        os.path.join(os.path.dirname(__file__), 'data_vasp/MAPI_soc_DOSCAR'))
    return data
Exemple #2
0
def toy_data_object():
    data_object = inputs.DataVasp(os.path.join(os.path.dirname(__file__),
                                               'data_vasp/MAPI_soc_OUTCAR'),
                                  os.path.join(os.path.dirname(__file__),
                                               'data_vasp/MAPI_soc_PROCAR'),
                                  ignore=0)

    data_object.number_of_kpoints = 5
    data_object.number_of_bands = 2
    data_object.number_of_ions = 1
    data_object.kpoints = np.array([[0, 0, 0], [0.25, 0, 0], [0.5, 0, 0],
                                    [0.5, 0.25, 0], [0.5, 0.5, 0]])
    data_object.energies = np.array([[1, 0.5], [2, 1], [1, 0.49124914462],
                                     [2, 1.04], [1, 0.4649965785], [2, 1.07],
                                     [1, 0.48], [2, 1.04], [1, 0.46],
                                     [2, 1.0005]])[:, 1:].reshape(
                                         data_object.number_of_kpoints,
                                         data_object.number_of_bands).T
    data_object.occupancy = np.array([[1, 1], [2, 0], [1, 1], [2, 0], [1, 1],
                                      [2, 0], [1, 1], [2, 0], [1, 1],
                                      [2, 0]])[:, 1:].reshape(
                                          data_object.number_of_kpoints,
                                          data_object.number_of_bands).T
    data_object.reciprocal_lattice = np.array([[1, 0, 0], [0, 1, 0], [0, 0,
                                                                      1]])
    data_object.CBM = 1
    data_object.VBM = 0.5
    data_object.fermi_energy = 0.75
    data_object.dos = np.array([[0.42, 0], [0.46, 7], [0.47, 3], [0.48, 5],
                                [0.49, 3], [0.5, 24], [0.6, 0], [0.7, 0],
                                [0.8, 0], [0.9, 0], [1.0, 3.1], [1.02, 0.2],
                                [1.04, 3.20], [1.06, 1.215]])
    data_object.integrated_dos = np.array([[0.42, 3], [0.46, 3.02],
                                           [0.47, 3.04], [0.48, 3.08],
                                           [0.49, 3.08], [0.5, 3.16],
                                           [0.6, 3.16], [0.7,
                                                         3.16], [0.8, 3.16],
                                           [0.9, 3.16], [1.0, 3.17],
                                           [1.02, 3.19], [1.04, 3.20],
                                           [1.06, 3.215]])

    return data_object
Exemple #3
0
def cli():

    print("Welcome to effmass 2.0.0 \U0001F388")

    ignore, seedname, fermi_level = None, None, None
    random_int = randint(10000, 99999)

    DFT_code = questionary.select(
        "Which DFT code have you used to generate the bandstructure?",
        choices=['Vasp', 'FHI-aims', 'Castep']).ask()

    pathname = questionary.path(
        "What's the path to your {} output files?".format(DFT_code),
        default="./",
        only_directories=True).ask()

    if DFT_code == 'Vasp':
        ignore = questionary.text(
            "How many k-points should I ignore at the start of the file? (useful for hybrid calculations)",
            default="0").ask()

    if DFT_code == 'Castep':

        seedname = questionary.text(
            "What's the seedname of your Castep files? (e.g. Si.bands and Si.castep have the seedname Si)",
        ).ask()
        fermi_level = questionary.text(
            "I will infer the position of the CBM and VBM from the calculated Fermi level."
            +
            " If you know this value to be incorrect, please input a more accurate value:",
        ).ask()

    extrema_search_depth = questionary.text(
        "How far (in eV) from the CBM (VBM) would you like me to search for minima (maxima)?",
        default="0.05").ask()

    energy_range = questionary.text(
        "What would you like the energy range (in eV) of each segment to be?",
        default="0.5").ask()

    which_values = questionary.checkbox(
        "Which values would you like me to calculate?",
        choices=[
            questionary.Choice("parabolic m* (least squares)", checked=True),
            questionary.Choice("parabolic m* (finite difference)",
                               checked=True)
        ]).ask()  # need to select oe

    save_plot = questionary.confirm(
        "Would you like me to save a plot of the band segments?",
        default=True,
        auto_enter=False).ask()

    save_summary = questionary.confirm(
        "Would you like me to save a summary file?",
        default=True,
        auto_enter=False).ask()

    settings = inputs.Settings(
        extrema_search_depth=float(extrema_search_depth),
        energy_range=float(energy_range))
    print("Reading in data...")

    if DFT_code == "Vasp":
        data = inputs.DataVasp(pathname + "/OUTCAR",
                               pathname + "/PROCAR",
                               ignore=int(ignore))

    elif DFT_code == "FHI-aims":
        data = inputs.DataAims(pathname)

    else:
        data = inputs.DataCastep(pathname + "/", seedname)
        if fermi_level:
            data.fermi_level = fermi_level
            data.find_cbm_vbm()

    print("Finding extrema...")
    print("Generating segments...")
    segments = extrema.generate_segments(settings, data)

    print("Calculating effective masses...")
    table = outputs.make_table(segments, which_values)
    outputs.print_terminal_table(table)

    if save_plot:
        print("Plotting segments...")
        outputs.plot_segments(data,
                              settings,
                              segments,
                              savefig=True,
                              random_int=random_int)
        print("Plot of segments saved to effmass_{}.png".format(random_int))

    if save_summary:
        print("Writing summary file...")

        outputs.print_summary_file(random_int, DFT_code, pathname, ignore,
                                   seedname, fermi_level, extrema_search_depth,
                                   energy_range, table)

        print("Summary file saved as effmass_{}.txt".format(random_int))
Exemple #4
0
def MAPI_cl_data_object():  # MAPI cl calculation data
    return inputs.DataVasp(os.path.join(os.path.dirname(__file__),
                                        'data_vasp/MAPI_cl_OUTCAR'),
                           os.path.join(os.path.dirname(__file__),
                                        'data_vasp/MAPI_cl_PROCAR'),
                           ignore=216)
Exemple #5
0
def Ge_SP_data_object():  # Ge spin-polarised calculation from Adam Jackson
    return inputs.DataVasp(
        os.path.join(os.path.dirname(__file__), 'data_vasp/Ge_SP_OUTCAR'),
        os.path.join(os.path.dirname(__file__), 'data_vasp/Ge_SP_PROCAR'))