Exemple #1
0
def create_ptdf_losses_dcopf_model(model_data, include_feasibility_slack=False, ptdf_options=None):

    ptdf_options = lpu.populate_default_ptdf_options(ptdf_options)

    baseMVA = model_data.data['system']['baseMVA']
    lpu.check_and_scale_ptdf_options(ptdf_options, baseMVA)

    md = model_data.clone_in_service()
    tx_utils.scale_ModelData_to_pu(md, inplace = True)

    gens = dict(md.elements(element_type='generator'))
    buses = dict(md.elements(element_type='bus'))
    branches = dict(md.elements(element_type='branch'))
    loads = dict(md.elements(element_type='load'))
    shunts = dict(md.elements(element_type='shunt'))

    gen_attrs = md.attributes(element_type='generator')
    bus_attrs = md.attributes(element_type='bus')
    branch_attrs = md.attributes(element_type='branch')
    load_attrs = md.attributes(element_type='load')
    shunt_attrs = md.attributes(element_type='shunt')

    inlet_branches_by_bus, outlet_branches_by_bus = \
        tx_utils.inlet_outlet_branches_by_bus(branches, buses)
    gens_by_bus = tx_utils.gens_by_bus(buses, gens)

    model = pe.ConcreteModel()

    ### declare (and fix) the loads at the buses
    bus_p_loads, _ = tx_utils.dict_of_bus_loads(buses, loads)

    libbus.declare_var_pl(model, bus_attrs['names'], initialize=bus_p_loads)
    model.pl.fix()

    ### declare the fixed shunts at the buses
    _, bus_gs_fixed_shunts = tx_utils.dict_of_bus_fixed_shunts(buses, shunts)

    ### declare the generator real power
    pg_init = {k: (gen_attrs['p_min'][k] + gen_attrs['p_max'][k]) / 2.0 for k in gen_attrs['pg']}
    libgen.declare_var_pg(model, gen_attrs['names'], initialize=pg_init,
                          bounds=zip_items(gen_attrs['p_min'], gen_attrs['p_max'])
                          )

    ### include the feasibility slack for the system balance
    p_rhs_kwargs = {}
    if include_feasibility_slack:
        p_rhs_kwargs, penalty_expr = _include_system_feasibility_slack(model, gen_attrs, bus_p_loads)

    ### declare net withdraw expression for use in PTDF power flows
    libbus.declare_expr_p_net_withdraw_at_bus(model=model,
                                              index_set=bus_attrs['names'],
                                              bus_p_loads=bus_p_loads,
                                              gens_by_bus=gens_by_bus,
                                              bus_gs_fixed_shunts=bus_gs_fixed_shunts,
                                              )

    ### declare the current flows in the branches
    p_max = {k: branches[k]['rating_long_term'] for k in branches.keys()}
    pfl_bounds = {k: (-p_max[k]**2,p_max[k]**2) for k in branches.keys()}
    pfl_init = {k: 0 for k in branches.keys()}

    ## Do and store PTDF calculation
    reference_bus = md.data['system']['reference_bus']
    ## We'll assume we have a solution to initialize from
    base_point = BasePointType.SOLUTION

    PTDF = ptdf_utils.PTDFLossesMatrix(branches, buses, reference_bus, base_point, ptdf_options)
    model._PTDF = PTDF
    model._ptdf_options = ptdf_options

    libbranch.declare_expr_pf(model=model,
                             index_set=branch_attrs['names'],
                             )

    libbranch.declare_var_pfl(model=model,
                              index_set=branch_attrs['names'],
                              initialize=pfl_init,
                              bounds=pfl_bounds
                             )

    ### declare the branch power flow approximation constraints
    libbranch.declare_eq_branch_power_ptdf_approx(model=model,
                                                  index_set=branch_attrs['names'],
                                                  PTDF=PTDF,
                                                  abs_ptdf_tol=ptdf_options['abs_ptdf_tol'],
                                                  rel_ptdf_tol=ptdf_options['rel_ptdf_tol'],
                                                  )

    ### declare the branch power loss approximation constraints
    libbranch.declare_eq_branch_loss_ptdf_approx(model=model,
                                                 index_set=branch_attrs['names'],
                                                 PTDF=PTDF,
                                                 abs_ptdf_tol=ptdf_options['abs_ptdf_tol'],
                                                 rel_ptdf_tol=ptdf_options['rel_ptdf_tol'],
                                                 )

    ### declare the p balance
    libbus.declare_eq_p_balance_ed(model=model,
                                   index_set=bus_attrs['names'],
                                   bus_p_loads=bus_p_loads,
                                   gens_by_bus=gens_by_bus,
                                   bus_gs_fixed_shunts=bus_gs_fixed_shunts,
                                   include_losses=branch_attrs['names'],
                                   **p_rhs_kwargs
                                   )

    ### declare the real power flow limits
    libbranch.declare_ineq_p_branch_thermal_lbub(model=model,
                                                 index_set=branch_attrs['names'],
                                                 branches=branches,
                                                 p_thermal_limits=p_max,
                                                 approximation_type=ApproximationType.PTDF
                                                 )

    ### declare the generator cost objective
    libgen.declare_expression_pgqg_operating_cost(model=model,
                                                  index_set=gen_attrs['names'],
                                                  p_costs=gen_attrs['p_cost']
                                                  )

    obj_expr = sum(model.pg_operating_cost[gen_name] for gen_name in model.pg_operating_cost)
    if include_feasibility_slack:
        obj_expr += penalty_expr

    model.obj = pe.Objective(expr=obj_expr)

    return model, md
Exemple #2
0
def create_btheta_losses_dcopf_model(model_data, relaxation_type=RelaxationType.SOC, include_angle_diff_limits=False, include_feasibility_slack=False):
    md = model_data.clone_in_service()
    tx_utils.scale_ModelData_to_pu(md, inplace = True)

    gens = dict(md.elements(element_type='generator'))
    buses = dict(md.elements(element_type='bus'))
    branches = dict(md.elements(element_type='branch'))
    loads = dict(md.elements(element_type='load'))
    shunts = dict(md.elements(element_type='shunt'))

    gen_attrs = md.attributes(element_type='generator')
    bus_attrs = md.attributes(element_type='bus')
    branch_attrs = md.attributes(element_type='branch')
    load_attrs = md.attributes(element_type='load')
    shunt_attrs = md.attributes(element_type='shunt')

    inlet_branches_by_bus, outlet_branches_by_bus = \
        tx_utils.inlet_outlet_branches_by_bus(branches, buses)
    gens_by_bus = tx_utils.gens_by_bus(buses, gens)

    model = pe.ConcreteModel()

    ### declare (and fix) the loads at the buses
    bus_p_loads, _ = tx_utils.dict_of_bus_loads(buses, loads)

    libbus.declare_var_pl(model, bus_attrs['names'], initialize=bus_p_loads)
    model.pl.fix()

    ### declare the fixed shunts at the buses
    _, bus_gs_fixed_shunts = tx_utils.dict_of_bus_fixed_shunts(buses, shunts)

    ### declare the polar voltages
    va_bounds = {k: (-pi, pi) for k in bus_attrs['va']}
    libbus.declare_var_va(model, bus_attrs['names'], initialize=bus_attrs['va'],
                          bounds=va_bounds
                          )

    dva_initialize = {k: 0.0 for k in branch_attrs['names']}
    libbranch.declare_var_dva(model, branch_attrs['names'],
                              initialize=dva_initialize
                              )

    ### include the feasibility slack for the bus balances
    p_rhs_kwargs = {}
    penalty_expr = None
    if include_feasibility_slack:
        p_rhs_kwargs, penalty_expr = _include_feasibility_slack(model, bus_attrs, gen_attrs, bus_p_loads)

    ### fix the reference bus
    ref_bus = md.data['system']['reference_bus']
    ref_angle = md.data['system']['reference_bus_angle']
    model.va[ref_bus].fix(radians(ref_angle))

    ### declare the generator real power
    pg_init = {k: (gen_attrs['p_min'][k] + gen_attrs['p_max'][k]) / 2.0 for k in gen_attrs['pg']}
    libgen.declare_var_pg(model, gen_attrs['names'], initialize=pg_init,
                          bounds=zip_items(gen_attrs['p_min'], gen_attrs['p_max'])
                          )

    ### declare the current flows in the branches
    vr_init = {k: bus_attrs['vm'][k] * pe.cos(bus_attrs['va'][k]) for k in bus_attrs['vm']}
    vj_init = {k: bus_attrs['vm'][k] * pe.sin(bus_attrs['va'][k]) for k in bus_attrs['vm']}
    p_max = {k: branches[k]['rating_long_term'] for k in branches.keys()}
    pf_bounds = {k: (-p_max[k],p_max[k]) for k in branches.keys()}
    pf_init = dict()
    for branch_name, branch in branches.items():
        from_bus = branch['from_bus']
        to_bus = branch['to_bus']
        y_matrix = tx_calc.calculate_y_matrix_from_branch(branch)
        ifr_init = tx_calc.calculate_ifr(vr_init[from_bus], vj_init[from_bus], vr_init[to_bus],
                                         vj_init[to_bus], y_matrix)
        ifj_init = tx_calc.calculate_ifj(vr_init[from_bus], vj_init[from_bus], vr_init[to_bus],
                                         vj_init[to_bus], y_matrix)
        pf_init[branch_name] = tx_calc.calculate_p(ifr_init, ifj_init, vr_init[from_bus], vj_init[from_bus])
    pfl_bounds = {k: (0,p_max[k]**2) for k in branches.keys()}
    pfl_init = {k: 0 for k in branches.keys()}

    libbranch.declare_var_pf(model=model,
                             index_set=branch_attrs['names'],
                             initialize=pf_init,
                             bounds=pf_bounds
                             )

    libbranch.declare_var_pfl(model=model,
                              index_set=branch_attrs['names'],
                              initialize=pfl_init,
                              bounds=pfl_bounds
                             )

    ### declare the angle difference constraint
    libbranch.declare_eq_branch_dva(model=model,
                                    index_set=branch_attrs['names'],
                                    branches=branches
                                    )

    ### declare the branch power flow approximation constraints
    libbranch.declare_eq_branch_power_btheta_approx(model=model,
                                                    index_set=branch_attrs['names'],
                                                    branches=branches,
                                                    approximation_type=ApproximationType.BTHETA_LOSSES
                                                    )

    ### declare the branch power loss approximation constraints
    libbranch.declare_eq_branch_loss_btheta_approx(model=model,
                                                    index_set=branch_attrs['names'],
                                                    branches=branches,
                                                    relaxation_type=relaxation_type
                                                    )

    ### declare the p balance
    libbus.declare_eq_p_balance_dc_approx(model=model,
                                          index_set=bus_attrs['names'],
                                          bus_p_loads=bus_p_loads,
                                          gens_by_bus=gens_by_bus,
                                          bus_gs_fixed_shunts=bus_gs_fixed_shunts,
                                          inlet_branches_by_bus=inlet_branches_by_bus,
                                          outlet_branches_by_bus=outlet_branches_by_bus,
                                          approximation_type=ApproximationType.BTHETA_LOSSES,
                                          **p_rhs_kwargs
                                          )

    ### declare the real power flow limits
    libbranch.declare_ineq_p_branch_thermal_lbub(model=model,
                                                 index_set=branch_attrs['names'],
                                                 branches=branches,
                                                 p_thermal_limits=p_max,
                                                 approximation_type=ApproximationType.BTHETA
                                                 )

    ### declare angle difference limits on interconnected buses
    if include_angle_diff_limits:
        libbranch.declare_ineq_angle_diff_branch_lbub(model=model,
                                                      index_set=branch_attrs['names'],
                                                      branches=branches,
                                                      coordinate_type=CoordinateType.POLAR
                                                      )

    ### declare the generator cost objective
    libgen.declare_expression_pgqg_operating_cost(model=model,
                                                  index_set=gen_attrs['names'],
                                                  p_costs=gen_attrs['p_cost']
                                                  )

    obj_expr = sum(model.pg_operating_cost[gen_name] for gen_name in model.pg_operating_cost)
    if include_feasibility_slack:
        obj_expr += penalty_expr

    model.obj = pe.Objective(expr=obj_expr)

    return model, md
Exemple #3
0
def create_ptdf_losses_dcopf_model(model_data,
                                   include_feasibility_slack=False):
    md = model_data.clone_in_service()
    tx_utils.scale_ModelData_to_pu(md, inplace=True)

    data_utils.create_dicts_of_ptdf_losses(md)

    gens = dict(md.elements(element_type='generator'))
    buses = dict(md.elements(element_type='bus'))
    branches = dict(md.elements(element_type='branch'))
    loads = dict(md.elements(element_type='load'))
    shunts = dict(md.elements(element_type='shunt'))

    gen_attrs = md.attributes(element_type='generator')
    bus_attrs = md.attributes(element_type='bus')
    branch_attrs = md.attributes(element_type='branch')
    load_attrs = md.attributes(element_type='load')
    shunt_attrs = md.attributes(element_type='shunt')

    inlet_branches_by_bus, outlet_branches_by_bus = \
        tx_utils.inlet_outlet_branches_by_bus(branches, buses)
    gens_by_bus = tx_utils.gens_by_bus(buses, gens)

    model = pe.ConcreteModel()

    ### declare (and fix) the loads at the buses
    bus_p_loads, _ = tx_utils.dict_of_bus_loads(buses, loads)

    libbus.declare_var_pl(model, bus_attrs['names'], initialize=bus_p_loads)
    model.pl.fix()

    ### declare the fixed shunts at the buses
    _, bus_gs_fixed_shunts = tx_utils.dict_of_bus_fixed_shunts(buses, shunts)

    ### declare the generator real power
    pg_init = {
        k: (gen_attrs['p_min'][k] + gen_attrs['p_max'][k]) / 2.0
        for k in gen_attrs['pg']
    }
    libgen.declare_var_pg(model,
                          gen_attrs['names'],
                          initialize=pg_init,
                          bounds=zip_items(gen_attrs['p_min'],
                                           gen_attrs['p_max']))

    ### include the feasibility slack for the system balance
    p_rhs_kwargs = {}
    if include_feasibility_slack:
        p_rhs_kwargs, penalty_expr = _include_system_feasibility_slack(
            model, gen_attrs, bus_p_loads)

    ### declare the current flows in the branches
    vr_init = {
        k: bus_attrs['vm'][k] * pe.cos(bus_attrs['va'][k])
        for k in bus_attrs['vm']
    }
    vj_init = {
        k: bus_attrs['vm'][k] * pe.sin(bus_attrs['va'][k])
        for k in bus_attrs['vm']
    }
    p_max = {k: branches[k]['rating_long_term'] for k in branches.keys()}
    pf_bounds = {k: (-p_max[k], p_max[k]) for k in branches.keys()}
    pf_init = dict()
    for branch_name, branch in branches.items():
        from_bus = branch['from_bus']
        to_bus = branch['to_bus']
        y_matrix = tx_calc.calculate_y_matrix_from_branch(branch)
        ifr_init = tx_calc.calculate_ifr(vr_init[from_bus], vj_init[from_bus],
                                         vr_init[to_bus], vj_init[to_bus],
                                         y_matrix)
        ifj_init = tx_calc.calculate_ifj(vr_init[from_bus], vj_init[from_bus],
                                         vr_init[to_bus], vj_init[to_bus],
                                         y_matrix)
        pf_init[branch_name] = tx_calc.calculate_p(ifr_init, ifj_init,
                                                   vr_init[from_bus],
                                                   vj_init[from_bus])
    pfl_bounds = {k: (-p_max[k]**2, p_max[k]**2) for k in branches.keys()}
    pfl_init = {k: 0 for k in branches.keys()}

    libbranch.declare_var_pf(model=model,
                             index_set=branch_attrs['names'],
                             initialize=pf_init,
                             bounds=pf_bounds)

    libbranch.declare_var_pfl(model=model,
                              index_set=branch_attrs['names'],
                              initialize=pfl_init,
                              bounds=pfl_bounds)

    ### declare the branch power flow approximation constraints
    libbranch.declare_eq_branch_power_ptdf_approx(
        model=model,
        index_set=branch_attrs['names'],
        branches=branches,
        buses=buses,
        bus_p_loads=bus_p_loads,
        gens_by_bus=gens_by_bus,
        bus_gs_fixed_shunts=bus_gs_fixed_shunts,
        approximation_type=ApproximationType.PTDF_LOSSES)

    ### declare the branch power loss approximation constraints
    libbranch.declare_eq_branch_loss_ptdf_approx(
        model=model,
        index_set=branch_attrs['names'],
        branches=branches,
        buses=buses,
        bus_p_loads=bus_p_loads,
        gens_by_bus=gens_by_bus,
        bus_gs_fixed_shunts=bus_gs_fixed_shunts)

    ### declare the p balance
    libbus.declare_eq_p_balance_ed(model=model,
                                   index_set=bus_attrs['names'],
                                   bus_p_loads=bus_p_loads,
                                   gens_by_bus=gens_by_bus,
                                   bus_gs_fixed_shunts=bus_gs_fixed_shunts,
                                   include_losses=branch_attrs['names'],
                                   **p_rhs_kwargs)

    ### declare the real power flow limits
    libbranch.declare_ineq_p_branch_thermal_lbub(
        model=model,
        index_set=branch_attrs['names'],
        branches=branches,
        p_thermal_limits=p_max,
        approximation_type=ApproximationType.PTDF)

    ### declare the generator cost objective
    libgen.declare_expression_pgqg_operating_cost(model=model,
                                                  index_set=gen_attrs['names'],
                                                  p_costs=gen_attrs['p_cost'])

    obj_expr = sum(model.pg_operating_cost[gen_name]
                   for gen_name in model.pg_operating_cost)
    if include_feasibility_slack:
        obj_expr += penalty_expr

    model.obj = pe.Objective(expr=obj_expr)

    return model, md