def test_plot_correlation_matrix(self): col1 = range(10) col2 = [cell * 3 + 1 for cell in col1] col3 = [1, 5, 8, 4, 1, 8, 5, 9, 0, 1] sa = utils.convert_to_sa( zip(col1, col2, col3), col_names=['base', 'linear_trans', 'no_correlation']) fig = comm.plot_correlation_matrix(sa, verbose=False) self.add_fig_to_report(fig, 'plot_correlation_matrix')
# M is multi class, we want to remove those rows. keep_index = np.where(labels != 2) labels = labels[keep_index] M = M[keep_index] if False: for x in describe_cols(M): print x if False: plot_correlation_scatter_plot(M) plot_correlation_matrix(M) plot_kernel_density(M["f0"]) # no designation of col name plot_box_plot(M["f0"]) # no designation of col name if False: from eights.generate import val_between, where_all_are_true, append_cols # val_btwn, where # generate a composite rule M = where_all_are_true( M, [ {"func": val_between, "col_name": "f0", "vals": (3.5, 5.0)}, {"func": val_between, "col_name": "f1", "vals": (2.7, 3.1)}, ], "a new col_name",
M = cast_np_nd_to_sa(M) #M is multi class, we want to remove those rows. keep_index = np.where(labels != 2) labels = labels[keep_index] M = M[keep_index] if False: for x in describe_cols(M): print x if False: plot_correlation_scatter_plot(M) plot_correlation_matrix(M) plot_kernel_density(M['f0']) #no designation of col name plot_box_plot(M['f0']) #no designation of col name if False: from eights.generate import val_between, where_all_are_true, append_cols #val_btwn, where #generate a composite rule M = where_all_are_true(M, [{ 'func': val_between, 'col_name': 'f0', 'vals': (3.5, 5.0) }, { 'func': val_between, 'col_name': 'f1', 'vals': (2.7, 3.1) }], 'a new col_name')