def test_compare_metrics_under_limits(sph, bl): """ Tests if KerrNewman Metric reduces to Kerr Metric, in the limit Q -> 0 and to Schwarzschild \ Metric, in the limits, a -> 0 & Q -> 0 """ M = 6.73317655e26 * u.kg a1, a2 = 0.5 * u.one, 0. * u.one Q = 0. * u.C ms = Schwarzschild(coords=sph, M=M) mk = Kerr(coords=bl, M=M, a=a1) mk0 = Kerr(coords=bl, M=M, a=a2) mkn = KerrNewman(coords=bl, M=M, a=a1, Q=Q) mkn0 = KerrNewman(coords=bl, M=M, a=a2, Q=Q) x_vec_sph = sph.position() x_vec_bl = bl.position() ms_mat = ms.metric_covariant(x_vec_sph) mk_mat = mk.metric_covariant(x_vec_bl) mk0_mat = mk0.metric_covariant(x_vec_bl) mkn_mat = mkn.metric_covariant(x_vec_bl) mkn0_mat = mkn0.metric_covariant(x_vec_bl) assert_allclose(ms_mat, mk0_mat, rtol=1e-8) assert_allclose(mk_mat, mkn_mat, rtol=1e-8) assert_allclose(mkn0_mat, ms_mat, rtol=1e-8)
def test_calculate_trajectory_kerr(x_vec, v_vec, t, M, a, end_lambda, step_size): mk_cov = Kerr(coords="BL", M=M, a=a) x_4vec = four_position(t, x_vec) mk_cov_mat = mk_cov.metric_covariant(x_4vec) init_vec = stacked_vec(mk_cov_mat, t, x_vec, v_vec, time_like=True) geod = Geodesic(metric=mk_cov, init_vec=init_vec, end_lambda=end_lambda, step_size=step_size, return_cartesian=False) ans = geod.trajectory testarray = list() for i in ans: x = i[:4] g = mk_cov.metric_covariant(x) testarray.append(g[0][0] * (i[4]**2) + g[1][1] * (i[5]**2) + g[2][2] * (i[6]**2) + g[3][3] * (i[7]**2) + 2 * g[0][3] * i[4] * i[7]) testarray = np.array(testarray, dtype=float) assert_allclose(testarray, 1., 1e-4)
def test_compare_metrics_under_limits(): """ Tests if KerrNewman Metric reduces to Kerr Metric, in the limit Q -> 0 and to Schwarzschild \ Metric, in the limits, a -> 0 & Q -> 0 """ r, theta = 99.9, 5 * np.pi / 6 M = 6.73317655e26 x_vec = np.array([0., r, theta, 0.]) ms = Schwarzschild(M=M) mk = Kerr(coords="BL", M=M, a=0.5) mk0 = Kerr(coords="BL", M=M, a=0.) mkn = KerrNewman(coords="BL", M=M, a=0.5, Q=0.) mkn0 = KerrNewman(coords="BL", M=M, a=0., Q=0.) ms_mat = ms.metric_covariant(x_vec) mk_mat = mk.metric_covariant(x_vec) mk0_mat = mk0.metric_covariant(x_vec) mkn_mat = mkn.metric_covariant(x_vec) mkn0_mat = mkn0.metric_covariant(x_vec) assert_allclose(ms_mat, mk0_mat, rtol=1e-8) assert_allclose(mk_mat, mkn_mat, rtol=1e-8) assert_allclose(mkn0_mat, ms_mat, rtol=1e-8)
def test_four_velocity(v_vec, time_like): """ Tests, if the 4-Velocity in KerrNewman Metric is the same as that in Kerr Metric, \ in the limit Q -> 0 and if it becomes the same as that in Schwarzschild \ Metric, in the limits, a -> 0 & Q -> 0 """ M = 1e24 x_vec = np.array([1.0, np.pi / 2, 0.1]) x_vec = np.array([1.0, np.pi / 2, 0.1]) ms = Schwarzschild(M=M) mk = Kerr(coords="BL", M=M, a=0.5) mk0 = Kerr(coords="BL", M=M, a=0.) mkn = KerrNewman(coords="BL", M=M, a=0.5, Q=0.) mkn0 = KerrNewman(coords="BL", M=M, a=0., Q=0.) ms_mat = ms.metric_covariant(x_vec) mk_mat = mk.metric_covariant(x_vec) mk0_mat = mk0.metric_covariant(x_vec) mkn_mat = mkn.metric_covariant(x_vec) mkn0_mat = mkn0.metric_covariant(x_vec) v4vec_s = four_velocity(ms_mat, v_vec, time_like) v4vec_k = four_velocity(mk_mat, v_vec, time_like) v4vec_k0 = four_velocity(mk0_mat, v_vec, time_like) v4vec_kn = four_velocity(mkn_mat, v_vec, time_like) v4vec_kn0 = four_velocity(mkn0_mat, v_vec, time_like) assert_allclose(v4vec_s, v4vec_k0, rtol=1e-8) assert_allclose(v4vec_k, v4vec_kn, rtol=1e-8) assert_allclose(v4vec_kn0, v4vec_s, rtol=1e-8)
def test_compare_vt_schwarzschild_kerr_kerrnewman(): """ Tests, whether the timelike component of 4-Velocity in KerrNewman Metric is the same as that \ in Kerr Metric, in the limit Q -> 0 and if it becomes the same as that in Schwarzschild \ Metric, in the limits, a -> 0 & Q -> 0 """ M = 1e24 x_vec = np.array([1.0, np.pi / 2, 0.1]) v_vec = np.array([-0.1, -0.01, 0.05]) ms = Schwarzschild(M=M) mk = Kerr(coords="BL", M=M, a=0.5) mk0 = Kerr(coords="BL", M=M, a=0.) mkn = KerrNewman(coords="BL", M=M, a=0.5, Q=0.) mkn0 = KerrNewman(coords="BL", M=M, a=0., Q=0.) ms_mat = ms.metric_covariant(x_vec) mk_mat = mk.metric_covariant(x_vec) mk0_mat = mk0.metric_covariant(x_vec) mkn_mat = mkn.metric_covariant(x_vec) mkn0_mat = mkn0.metric_covariant(x_vec) vt_s = v_t(ms_mat, v_vec) vt_k = v_t(mk_mat, v_vec) vt_k0 = v_t(mk0_mat, v_vec) vt_kn = v_t(mkn_mat, v_vec) vt_kn0 = v_t(mkn0_mat, v_vec) assert_allclose(vt_s, vt_k0, rtol=1e-8) assert_allclose(vt_k, vt_kn, rtol=1e-8) assert_allclose(vt_kn0, vt_s, rtol=1e-8)
def test_calculate_trajectory_iterator_RuntimeWarning_kerr(): t = 0. M = 1e25 a = 0. x_vec = np.array([306., np.pi / 2, np.pi / 2]) v_vec = np.array([0., 0.01, 10.]) mk_cov = Kerr(coords="BL", M=M, a=a) x_4vec = four_position(t, x_vec) mk_cov_mat = mk_cov.metric_covariant(x_4vec) init_vec = stacked_vec(mk_cov_mat, t, x_vec, v_vec, time_like=True) end_lambda = 1. stepsize = 0.4e-6 OdeMethodKwargs = {"stepsize": stepsize} geod = Geodesic(metric=mk_cov, init_vec=init_vec, end_lambda=end_lambda, step_size=stepsize, return_cartesian=False) with warnings.catch_warnings(record=True) as w: it = geod.calculate_trajectory_iterator( OdeMethodKwargs=OdeMethodKwargs, ) for _, _ in zip(range(1000), it): pass assert len(w) >= 1
def test_calculate_trajectory_iterator_kerr(x_vec, v_vec, t, M, a, end_lambda, step_size, OdeMethodKwargs, return_cartesian): mk_cov = Kerr(coords="BL", M=M, a=a) x_4vec = four_position(t, x_vec) mk_cov_mat = mk_cov.metric_covariant(x_4vec) init_vec = stacked_vec(mk_cov_mat, t, x_vec, v_vec, time_like=True) geod = Geodesic(metric=mk_cov, init_vec=init_vec, end_lambda=end_lambda, step_size=step_size, return_cartesian=return_cartesian) traj = geod.trajectory traj_iter = geod.calculate_trajectory_iterator( OdeMethodKwargs=OdeMethodKwargs, return_cartesian=return_cartesian) traj_iter_list = list() for _, val in zip(range(50), traj_iter): traj_iter_list.append(val[1]) traj_iter_arr = np.array(traj_iter_list) assert_allclose(traj[:50, :], traj_iter_arr, rtol=1e-10)
def test_compare_kerr_kerrnewman_metric(): """ Tests, if covariant & contravariant forms of Kerr & Kerr-Newman metrics match, when Q -> 0 """ r, theta, M, a = 0.1, 4 * np.pi / 5, 1e23, 0.99 x_vec = np.array([0., r, theta, 0.]) mk = Kerr(coords="BL", M=M, a=a) mkn = KerrNewman(coords="BL", M=M, a=a, Q=0.) mk_contra = mk.metric_contravariant(x_vec) mkn_contra = mkn.metric_contravariant(x_vec) mk_cov = mk.metric_covariant(x_vec) mkn_cov = mkn.metric_covariant(x_vec) assert_allclose(mk_contra, mkn_contra, rtol=1e-10) assert_allclose(mk_cov, mkn_cov, rtol=1e-10)
def test_calculate_trajectory3_kerr(): # Based on the revolution of earth around sun # Data from https://en.wikipedia.org/wiki/Earth%27s_orbit # Initialized with cartesian coordinates # Function returning cartesian coordinates t = 0. M = 1.989e30 a = 0. distance_at_perihelion = 147.10e9 speed_at_perihelion = 30290 x_sph = CartesianConversion(distance_at_perihelion / np.sqrt(2), distance_at_perihelion / np.sqrt(2), 0., -speed_at_perihelion / np.sqrt(2), speed_at_perihelion / np.sqrt(2), 0.).convert_spherical() x_vec = x_sph[:3] v_vec = x_sph[3:] mk_cov = Kerr(coords="BL", M=M, a=a) x_4vec = four_position(t, x_vec) mk_cov_mat = mk_cov.metric_covariant(x_4vec) init_vec = stacked_vec(mk_cov_mat, t, x_vec, v_vec, time_like=True) end_lambda = 3.154e7 geod = Geodesic( metric=mk_cov, init_vec=init_vec, end_lambda=end_lambda, step_size=end_lambda / 2e3, ) ans = geod.trajectory # velocity should be 29.29 km/s at aphelion(where r is max) R = np.sqrt(ans[:, 1]**2 + ans[:, 2]**2 + ans[:, 3]**2) i = np.argmax(R) # index where radial distance is max v_aphelion = ((np.sqrt(ans[i, 5]**2 + ans[i, 6]**2 + ans[i, 7]**2) * (u.m / u.s)).to(u.km / u.s)).value assert_allclose(v_aphelion, 29.29, rtol=0.01)
def test_compare_kerr_kerrnewman_metric(bl): """ Tests, if covariant & contravariant forms of Kerr & Kerr-Newman metrics match, when Q -> 0 """ M = 1e23 * u.kg a = 0.99 * u.one Q = 0. * u.C x_vec = bl.position() mk = Kerr(coords=bl, M=M, a=a) mkn = KerrNewman(coords=bl, M=M, a=a, Q=Q) mk_contra = mk.metric_contravariant(x_vec) mkn_contra = mkn.metric_contravariant(x_vec) mk_cov = mk.metric_covariant(x_vec) mkn_cov = mkn.metric_covariant(x_vec) assert_allclose(mk_contra, mkn_contra, rtol=1e-10) assert_allclose(mk_cov, mkn_cov, rtol=1e-10)
def test_calculate_trajectory_kerr(bl, M, a, end_lambda, step_size): mk = Kerr(coords=bl, M=M, a=a) geod = Timelike(metric=mk, coords=bl, end_lambda=end_lambda, step_size=step_size, return_cartesian=False) ans = geod.trajectory testarray = list() for i in ans: x = i[:4] g = mk.metric_covariant(x) testarray.append(g[0][0] * (i[4]**2) + g[1][1] * (i[5]**2) + g[2][2] * (i[6]**2) + g[3][3] * (i[7]**2) + 2 * g[0][3] * i[4] * i[7]) testarray = np.array(testarray) assert_allclose(testarray, _c**2, 1e-8)