Exemple #1
0
def validate_localization_transition_update(fname="validation_run.p",
                                            show_plot=True):
    validation_run = pickle.load(open(fname, "rb"))

    EKF = Localization_EKF(validation_run["states"][0][1], NoiseParams["P0"],
                           NoiseParams["Q"], MapParams,
                           validation_run["tf_base_to_camera"],
                           NoiseParams["g"])
    open_loop_states = [EKF.x]
    for i in range(len(validation_run["controls"]) - 1):
        u = validation_run["controls"][i][1]
        dt = validation_run["controls"][
            i + 1][0] - validation_run["controls"][i][0]
        EKF.transition_update(u, dt)
        open_loop_states.append(EKF.x)

    ground_truth_x = [s[0] for t, s in validation_run["states"]]
    ground_truth_y = [s[1] for t, s in validation_run["states"]]
    open_loop_x = [s[0] for s in open_loop_states]
    open_loop_y = [s[1] for s in open_loop_states]
    plt.plot(ground_truth_x,
             ground_truth_y,
             label="ground truth",
             color="black")
    plt.plot(open_loop_x, open_loop_y, label="open loop", color="green")
    plt.axis("equal")
    if show_plot:
        plt.legend(loc=0)
        plt.show()
Exemple #2
0
def validate_localization_transition_model(fname="validation_run.p"):
    validation_run = pickle.load(open(fname, "rb"))

    EKF = Localization_EKF(validation_run["states"][0][1], NoiseParams["P0"],
                           NoiseParams["Q"], MapParams,
                           validation_run["tf_base_to_camera"],
                           NoiseParams["g"])

    for i, tc in enumerate(validation_run["controls"]):
        timestamp, control = tc
        g, Gx, Gu = EKF.transition_model(control, .1)
        g_ref, Gx_ref, Gu_ref = validation_run["transition_model_validation"][
            i]
        if norm(g - g_ref) + norm(Gx - Gx_ref) + norm(Gu - Gu_ref) > 1e-2:
            print "At state x = {0} with u = {1} and dt = {2} got Localization_EKF.transition_model output:\n".format(
                EKF.x, control, .1)
            print g
            print Gx
            print Gu
            print "\nvs. the expected values\n"
            print g_ref
            print Gx_ref
            print Gu_ref
            return False

    print "Localization_EKF.transition_model seems to be correct"
    return True
Exemple #3
0
def validate_localization_map_line_to_predicted_measurement(
        fname="validation_run.p"):
    validation_run = pickle.load(open(fname, "rb"))

    EKF = Localization_EKF(validation_run["states"][0][1], NoiseParams["P0"],
                           NoiseParams["Q"], MapParams,
                           validation_run["tf_base_to_camera"],
                           NoiseParams["g"])

    for j in range(EKF.map_lines.shape[1]):
        h, Hx = EKF.map_line_to_predicted_measurement(EKF.map_lines[:, j])
        h_ref, Hx_ref = validation_run[
            "map_line_to_predicted_measurement_validation"][j]
        if norm(h - h_ref) + norm(Hx - Hx_ref) > 1e-3:
            print "At state x = {0} with m = {1} got Localization_EKF.map_line_to_predicted_measurement_validation output:\n".format(
                EKF.x, EKF.map_lines[:, j])
            print h
            print Hx
            print "\nvs. the expected values\n"
            print h_ref
            print Hx_ref
            return False

    print "Localization_EKF.map_line_to_predicted_measurement seems to be correct"
    return True
Exemple #4
0
def validate_localization_associate_measurements(fname = "validation_run.p"):
    if not validate_localization_transition_model(fname) or not validate_localization_map_line_to_predicted_measurement(fname):
        print "Validation of associate_measurements cannot proceed."
        return False

    validation_run = pickle.load(open(fname, "rb"))

    EKF = Localization_EKF(validation_run["states"][0][1], NoiseParams["P0"], NoiseParams["Q"],
                           MapParams, validation_run["tf_base_to_camera"], NoiseParams["g"])
    for i in range(len(validation_run["scans"])):
        EKF.x, EKF.P = validation_run["associate_measurements_validation_inputs"][i]
        alpha, r, C_AR, _, _ = ExtractLines(validation_run["scans"][i][1],
                                            validation_run["scans"][i][2],
                                            LineExtractionParams,
                                            NoiseParams["var_theta"],
                                            NoiseParams["var_rho"])
        Z = np.vstack((alpha, r))
        v_list, R_list, H_list = EKF.associate_measurements(Z, C_AR)
        v_list_ref, R_list_ref, H_list_ref = validation_run["associate_measurements_validation"][i]
        if len(v_list) != len(v_list_ref) or len(R_list) != len(R_list_ref) or len(H_list) != len(H_list_ref):
            print "You may have an error in Localization_EKF.associate_measurements."
            return False
        permutation = [np.argmin([norm(R - R_ref) for R_ref in R_list_ref]) for R in R_list]
        v_error = sum([norm(v_list[j] - v_list_ref[k]) for j, k in enumerate(permutation)])
        R_error = sum([norm(R_list[j] - R_list_ref[k]) for j, k in enumerate(permutation)])
        H_error = sum([norm(H_list[j] - H_list_ref[k]) for j, k in enumerate(permutation)])
        if v_error + R_error + H_error > 1e-3:
            print "You may have an error in Localization_EKF.associate_measurements."
            return False

    print "Localization_EKF.associate_measurements seems to be correct"
    return True
    def run(self):
        rate = rospy.Rate(100)

        while not self.latest_pose:
            rate.sleep()

        x0 = np.array([self.latest_pose.position.x,
                       self.latest_pose.position.y,
                       get_yaw_from_quaternion(self.latest_pose.orientation)])
        self.EKF_time = self.latest_pose_time
        self.EKF = Localization_EKF(x0, NoiseParams["P0"], NoiseParams["Q"],
                                    MapParams, self.base_to_camera, NoiseParams["g"])
        self.OLC = Localization_EKF(x0, NoiseParams["P0"], NoiseParams["Q"],
                                    MapParams, self.base_to_camera, NoiseParams["g"])

        while True:
            if not self.scans:
                rate.sleep()
                continue

            while self.controls and self.controls[0][0] <= self.scans[0][0]:
                next_timestep, next_control = self.controls.popleft()
                if next_timestep < self.EKF_time:    # guard against time weirdness (msgs out of order)
                    continue
                self.EKF.transition_update(self.current_control,
                                           next_timestep.to_time() - self.EKF_time.to_time())
                self.OLC.transition_update(self.current_control,
                                           next_timestep.to_time() - self.EKF_time.to_time())
                self.EKF_time, self.current_control = next_timestep, next_control
                self.tfBroadcaster.sendTransform(create_transform_msg(
                    (self.EKF.x[0], self.EKF.x[1], 0),
                    tf.transformations.quaternion_from_euler(0, 0, self.EKF.x[2]),
                    "EKF", "world", self.EKF_time)
                )
                self.tfBroadcaster.sendTransform(create_transform_msg(
                    (self.OLC.x[0], self.OLC.x[1], 0),
                    tf.transformations.quaternion_from_euler(0, 0, self.OLC.x[2]),
                    "open_loop", "world", self.EKF_time)
                )
            
            scan_time, theta, rho = self.scans.popleft()
            if scan_time < self.EKF_time:
                continue
            self.EKF.transition_update(self.current_control,
                                       scan_time.to_time() - self.EKF_time.to_time())
            self.OLC.transition_update(self.current_control,
                                       scan_time.to_time() - self.EKF_time.to_time())
            self.EKF_time = scan_time
            alpha, r, C_AR, _, _ = ExtractLines(theta, rho,
                                                LineExtractionParams,
                                                NoiseParams["var_theta"],
                                                NoiseParams["var_rho"])
            Z = np.vstack((alpha, r))
            self.EKF.measurement_update(Z, C_AR)
            while len(self.scans) > 1:    # keep only the last element in the queue, if we're falling behind
                self.scans.popleft()
Exemple #6
0
def validate_localization_EKF(fname="validation_run.p", show_plot=True):
    validate_localization_transition_update(fname, False)

    validation_run = pickle.load(open(fname, "rb"))
    EKF = Localization_EKF(validation_run["states"][0][1], NoiseParams["P0"],
                           NoiseParams["Q"], MapParams,
                           validation_run["tf_base_to_camera"],
                           NoiseParams["g"])
    EKF_states = [EKF.x]
    scan_states = []
    scan_idx = 0
    for i in range(len(validation_run["controls"]) - 1):
        u = validation_run["controls"][i][1]
        t1 = validation_run["controls"][i + 1][0]
        t0 = validation_run["controls"][i][0]
        while scan_idx < len(validation_run["scans"]
                             ) and validation_run["scans"][scan_idx][0] < t1:
            EKF.transition_update(u, validation_run["scans"][scan_idx][0] - t0)
            t0 = validation_run["scans"][scan_idx][0]
            alpha, r, C_AR, _, _ = ExtractLines(
                validation_run["scans"][scan_idx][1],
                validation_run["scans"][scan_idx][2], LineExtractionParams,
                NoiseParams["var_theta"], NoiseParams["var_rho"])
            Z = np.vstack((alpha, r))
            EKF.measurement_update(Z, C_AR)
            scan_states.append(EKF.x)
            scan_idx = scan_idx + 1
        EKF.transition_update(u, t1 - t0)
        EKF_states.append(EKF.x)

    EKF_x = [s[0] for s in EKF_states]
    EKF_y = [s[1] for s in EKF_states]
    plt.plot(EKF_x, EKF_y, label="EKF (known map)", color="red")
    scan_x = [s[0] for s in scan_states]
    scan_y = [s[1] for s in scan_states]
    plt.scatter(scan_x,
                scan_y,
                marker="x",
                label="measurement update",
                color="blue")
    if show_plot:
        plt.legend(loc=0)
        plt.show()
class LocalizationVisualizer:
    def __init__(self):
        rospy.init_node('turtlebot_localization')

        ## Use simulation time (i.e. get time from rostopic /clock)
        rospy.set_param('use_sim_time', 'true')
        rate = rospy.Rate(10)
        while rospy.Time.now() == rospy.Time(0):
            rate.sleep()

        ## Get transformation of camera frame with respect to the base frame
        self.tfBuffer = tf2_ros.Buffer()
        self.tfListener = tf2_ros.TransformListener(self.tfBuffer)
        while True:
            try:
                # notably camera_link and not camera_depth_frame below, not sure why
                self.raw_base_to_camera = self.tfBuffer.lookup_transform(
                    "base_footprint", "base_scan", rospy.Time()).transform
                break
            except tf2_ros.LookupException:
                rate.sleep()
        rotation = self.raw_base_to_camera.rotation
        translation = self.raw_base_to_camera.translation
        tf_theta = get_yaw_from_quaternion(rotation)
        self.base_to_camera = [translation.x, translation.y, tf_theta]

        ## Colocate the `ground_truth` and `base_footprint` frames for visualization purposes
        tf2_ros.StaticTransformBroadcaster().sendTransform(
            create_transform_msg((0, 0, 0), (0, 0, 0, 1), "ground_truth",
                                 "base_footprint"))

        ## Initial state for EKF
        self.EKF = None
        self.EKF_time = None
        self.current_control = np.zeros(2)
        self.latest_pose = None
        self.latest_pose_time = None
        self.controls = deque()
        self.scans = deque()

        ## Set up publishers and subscribers
        self.tfBroadcaster = tf2_ros.TransformBroadcaster()
        rospy.Subscriber('/scan', LaserScan, self.scan_callback)
        rospy.Subscriber('/cmd_vel', Twist, self.control_callback)
        rospy.Subscriber('/gazebo/model_states', ModelStates,
                         self.state_callback)
        self.ground_truth_ct = 0

    def scan_callback(self, msg):
        if self.EKF:
            N = len(msg.ranges)
            ######## ADDED ARTIFICAL NOISE ################
            noise = np.random.normal(0, 0.2, N)
            self.scans.append((msg.header.stamp,
                               np.array([
                                   i * msg.angle_increment + msg.angle_min
                                   for i in range(len(msg.ranges))
                               ]), np.array(msg.ranges) + noise))

    def control_callback(self, msg):
        if self.EKF:
            self.controls.append(
                (rospy.Time.now(), np.array([msg.linear.x, msg.angular.z])))

    def state_callback(self, msg):
        self.ground_truth_ct = self.ground_truth_ct + 1
        # `rostopic hz /gazebo/model_states` = 1000; let's broadcast the transform at 20Hz to reduce lag
        if self.ground_truth_ct % 50 == 0:
            self.latest_pose_time = rospy.Time.now()
            self.latest_pose = msg.pose[msg.name.index("turtlebot3_burger")]
            self.tfBroadcaster.sendTransform(
                create_transform_msg(
                    (self.latest_pose.position.x, self.latest_pose.position.y,
                     0), (self.latest_pose.orientation.x,
                          self.latest_pose.orientation.y,
                          self.latest_pose.orientation.z,
                          self.latest_pose.orientation.w), "base_footprint",
                    "world", self.latest_pose_time))

    def run(self):
        rate = rospy.Rate(100)

        while not self.latest_pose:
            rate.sleep()

        x0 = np.array([
            self.latest_pose.position.x, self.latest_pose.position.y,
            get_yaw_from_quaternion(self.latest_pose.orientation)
        ])
        self.EKF_time = self.latest_pose_time
        self.EKF = Localization_EKF(x0, NoiseParams["P0"], NoiseParams["Q"],
                                    MapParams, self.base_to_camera,
                                    NoiseParams["g"])
        self.OLC = Localization_EKF(x0, NoiseParams["P0"], NoiseParams["Q"],
                                    MapParams, self.base_to_camera,
                                    NoiseParams["g"])

        while True:
            if not self.scans:
                rate.sleep()
                continue

            while self.controls and self.controls[0][0] <= self.scans[0][0]:
                next_timestep, next_control = self.controls.popleft()
                if next_timestep < self.EKF_time:  # guard against time weirdness (msgs out of order)
                    continue
                self.EKF.transition_update(
                    self.current_control,
                    next_timestep.to_time() - self.EKF_time.to_time())
                self.OLC.transition_update(
                    self.current_control,
                    next_timestep.to_time() - self.EKF_time.to_time())
                self.EKF_time, self.current_control = next_timestep, next_control
                self.tfBroadcaster.sendTransform(
                    create_transform_msg(
                        (self.EKF.x[0], self.EKF.x[1], 0),
                        tf.transformations.quaternion_from_euler(
                            0, 0,
                            self.EKF.x[2]), "EKF", "world", self.EKF_time))
                self.tfBroadcaster.sendTransform(
                    create_transform_msg(
                        (self.OLC.x[0], self.OLC.x[1], 0),
                        tf.transformations.quaternion_from_euler(
                            0, 0, self.OLC.x[2]), "open_loop", "world",
                        self.EKF_time))

            scan_time, theta, rho = self.scans.popleft()
            if scan_time < self.EKF_time:
                continue
            self.EKF.transition_update(
                self.current_control,
                scan_time.to_time() - self.EKF_time.to_time())
            self.OLC.transition_update(
                self.current_control,
                scan_time.to_time() - self.EKF_time.to_time())
            self.EKF_time = scan_time
            alpha, r, C_AR, _, _ = ExtractLines(theta, rho,
                                                LineExtractionParams,
                                                NoiseParams["var_theta"],
                                                NoiseParams["var_rho"])
            Z = np.vstack((alpha, r))
            self.EKF.measurement_update(Z, C_AR)
            while len(
                    self.scans
            ) > 1:  # keep only the last element in the queue, if we're falling behind
                self.scans.popleft()