def validate_localization_transition_update(fname="validation_run.p", show_plot=True): validation_run = pickle.load(open(fname, "rb")) EKF = Localization_EKF(validation_run["states"][0][1], NoiseParams["P0"], NoiseParams["Q"], MapParams, validation_run["tf_base_to_camera"], NoiseParams["g"]) open_loop_states = [EKF.x] for i in range(len(validation_run["controls"]) - 1): u = validation_run["controls"][i][1] dt = validation_run["controls"][ i + 1][0] - validation_run["controls"][i][0] EKF.transition_update(u, dt) open_loop_states.append(EKF.x) ground_truth_x = [s[0] for t, s in validation_run["states"]] ground_truth_y = [s[1] for t, s in validation_run["states"]] open_loop_x = [s[0] for s in open_loop_states] open_loop_y = [s[1] for s in open_loop_states] plt.plot(ground_truth_x, ground_truth_y, label="ground truth", color="black") plt.plot(open_loop_x, open_loop_y, label="open loop", color="green") plt.axis("equal") if show_plot: plt.legend(loc=0) plt.show()
def validate_localization_transition_model(fname="validation_run.p"): validation_run = pickle.load(open(fname, "rb")) EKF = Localization_EKF(validation_run["states"][0][1], NoiseParams["P0"], NoiseParams["Q"], MapParams, validation_run["tf_base_to_camera"], NoiseParams["g"]) for i, tc in enumerate(validation_run["controls"]): timestamp, control = tc g, Gx, Gu = EKF.transition_model(control, .1) g_ref, Gx_ref, Gu_ref = validation_run["transition_model_validation"][ i] if norm(g - g_ref) + norm(Gx - Gx_ref) + norm(Gu - Gu_ref) > 1e-2: print "At state x = {0} with u = {1} and dt = {2} got Localization_EKF.transition_model output:\n".format( EKF.x, control, .1) print g print Gx print Gu print "\nvs. the expected values\n" print g_ref print Gx_ref print Gu_ref return False print "Localization_EKF.transition_model seems to be correct" return True
def validate_localization_map_line_to_predicted_measurement( fname="validation_run.p"): validation_run = pickle.load(open(fname, "rb")) EKF = Localization_EKF(validation_run["states"][0][1], NoiseParams["P0"], NoiseParams["Q"], MapParams, validation_run["tf_base_to_camera"], NoiseParams["g"]) for j in range(EKF.map_lines.shape[1]): h, Hx = EKF.map_line_to_predicted_measurement(EKF.map_lines[:, j]) h_ref, Hx_ref = validation_run[ "map_line_to_predicted_measurement_validation"][j] if norm(h - h_ref) + norm(Hx - Hx_ref) > 1e-3: print "At state x = {0} with m = {1} got Localization_EKF.map_line_to_predicted_measurement_validation output:\n".format( EKF.x, EKF.map_lines[:, j]) print h print Hx print "\nvs. the expected values\n" print h_ref print Hx_ref return False print "Localization_EKF.map_line_to_predicted_measurement seems to be correct" return True
def validate_localization_associate_measurements(fname = "validation_run.p"): if not validate_localization_transition_model(fname) or not validate_localization_map_line_to_predicted_measurement(fname): print "Validation of associate_measurements cannot proceed." return False validation_run = pickle.load(open(fname, "rb")) EKF = Localization_EKF(validation_run["states"][0][1], NoiseParams["P0"], NoiseParams["Q"], MapParams, validation_run["tf_base_to_camera"], NoiseParams["g"]) for i in range(len(validation_run["scans"])): EKF.x, EKF.P = validation_run["associate_measurements_validation_inputs"][i] alpha, r, C_AR, _, _ = ExtractLines(validation_run["scans"][i][1], validation_run["scans"][i][2], LineExtractionParams, NoiseParams["var_theta"], NoiseParams["var_rho"]) Z = np.vstack((alpha, r)) v_list, R_list, H_list = EKF.associate_measurements(Z, C_AR) v_list_ref, R_list_ref, H_list_ref = validation_run["associate_measurements_validation"][i] if len(v_list) != len(v_list_ref) or len(R_list) != len(R_list_ref) or len(H_list) != len(H_list_ref): print "You may have an error in Localization_EKF.associate_measurements." return False permutation = [np.argmin([norm(R - R_ref) for R_ref in R_list_ref]) for R in R_list] v_error = sum([norm(v_list[j] - v_list_ref[k]) for j, k in enumerate(permutation)]) R_error = sum([norm(R_list[j] - R_list_ref[k]) for j, k in enumerate(permutation)]) H_error = sum([norm(H_list[j] - H_list_ref[k]) for j, k in enumerate(permutation)]) if v_error + R_error + H_error > 1e-3: print "You may have an error in Localization_EKF.associate_measurements." return False print "Localization_EKF.associate_measurements seems to be correct" return True
def run(self): rate = rospy.Rate(100) while not self.latest_pose: rate.sleep() x0 = np.array([self.latest_pose.position.x, self.latest_pose.position.y, get_yaw_from_quaternion(self.latest_pose.orientation)]) self.EKF_time = self.latest_pose_time self.EKF = Localization_EKF(x0, NoiseParams["P0"], NoiseParams["Q"], MapParams, self.base_to_camera, NoiseParams["g"]) self.OLC = Localization_EKF(x0, NoiseParams["P0"], NoiseParams["Q"], MapParams, self.base_to_camera, NoiseParams["g"]) while True: if not self.scans: rate.sleep() continue while self.controls and self.controls[0][0] <= self.scans[0][0]: next_timestep, next_control = self.controls.popleft() if next_timestep < self.EKF_time: # guard against time weirdness (msgs out of order) continue self.EKF.transition_update(self.current_control, next_timestep.to_time() - self.EKF_time.to_time()) self.OLC.transition_update(self.current_control, next_timestep.to_time() - self.EKF_time.to_time()) self.EKF_time, self.current_control = next_timestep, next_control self.tfBroadcaster.sendTransform(create_transform_msg( (self.EKF.x[0], self.EKF.x[1], 0), tf.transformations.quaternion_from_euler(0, 0, self.EKF.x[2]), "EKF", "world", self.EKF_time) ) self.tfBroadcaster.sendTransform(create_transform_msg( (self.OLC.x[0], self.OLC.x[1], 0), tf.transformations.quaternion_from_euler(0, 0, self.OLC.x[2]), "open_loop", "world", self.EKF_time) ) scan_time, theta, rho = self.scans.popleft() if scan_time < self.EKF_time: continue self.EKF.transition_update(self.current_control, scan_time.to_time() - self.EKF_time.to_time()) self.OLC.transition_update(self.current_control, scan_time.to_time() - self.EKF_time.to_time()) self.EKF_time = scan_time alpha, r, C_AR, _, _ = ExtractLines(theta, rho, LineExtractionParams, NoiseParams["var_theta"], NoiseParams["var_rho"]) Z = np.vstack((alpha, r)) self.EKF.measurement_update(Z, C_AR) while len(self.scans) > 1: # keep only the last element in the queue, if we're falling behind self.scans.popleft()
def validate_localization_EKF(fname="validation_run.p", show_plot=True): validate_localization_transition_update(fname, False) validation_run = pickle.load(open(fname, "rb")) EKF = Localization_EKF(validation_run["states"][0][1], NoiseParams["P0"], NoiseParams["Q"], MapParams, validation_run["tf_base_to_camera"], NoiseParams["g"]) EKF_states = [EKF.x] scan_states = [] scan_idx = 0 for i in range(len(validation_run["controls"]) - 1): u = validation_run["controls"][i][1] t1 = validation_run["controls"][i + 1][0] t0 = validation_run["controls"][i][0] while scan_idx < len(validation_run["scans"] ) and validation_run["scans"][scan_idx][0] < t1: EKF.transition_update(u, validation_run["scans"][scan_idx][0] - t0) t0 = validation_run["scans"][scan_idx][0] alpha, r, C_AR, _, _ = ExtractLines( validation_run["scans"][scan_idx][1], validation_run["scans"][scan_idx][2], LineExtractionParams, NoiseParams["var_theta"], NoiseParams["var_rho"]) Z = np.vstack((alpha, r)) EKF.measurement_update(Z, C_AR) scan_states.append(EKF.x) scan_idx = scan_idx + 1 EKF.transition_update(u, t1 - t0) EKF_states.append(EKF.x) EKF_x = [s[0] for s in EKF_states] EKF_y = [s[1] for s in EKF_states] plt.plot(EKF_x, EKF_y, label="EKF (known map)", color="red") scan_x = [s[0] for s in scan_states] scan_y = [s[1] for s in scan_states] plt.scatter(scan_x, scan_y, marker="x", label="measurement update", color="blue") if show_plot: plt.legend(loc=0) plt.show()
class LocalizationVisualizer: def __init__(self): rospy.init_node('turtlebot_localization') ## Use simulation time (i.e. get time from rostopic /clock) rospy.set_param('use_sim_time', 'true') rate = rospy.Rate(10) while rospy.Time.now() == rospy.Time(0): rate.sleep() ## Get transformation of camera frame with respect to the base frame self.tfBuffer = tf2_ros.Buffer() self.tfListener = tf2_ros.TransformListener(self.tfBuffer) while True: try: # notably camera_link and not camera_depth_frame below, not sure why self.raw_base_to_camera = self.tfBuffer.lookup_transform( "base_footprint", "base_scan", rospy.Time()).transform break except tf2_ros.LookupException: rate.sleep() rotation = self.raw_base_to_camera.rotation translation = self.raw_base_to_camera.translation tf_theta = get_yaw_from_quaternion(rotation) self.base_to_camera = [translation.x, translation.y, tf_theta] ## Colocate the `ground_truth` and `base_footprint` frames for visualization purposes tf2_ros.StaticTransformBroadcaster().sendTransform( create_transform_msg((0, 0, 0), (0, 0, 0, 1), "ground_truth", "base_footprint")) ## Initial state for EKF self.EKF = None self.EKF_time = None self.current_control = np.zeros(2) self.latest_pose = None self.latest_pose_time = None self.controls = deque() self.scans = deque() ## Set up publishers and subscribers self.tfBroadcaster = tf2_ros.TransformBroadcaster() rospy.Subscriber('/scan', LaserScan, self.scan_callback) rospy.Subscriber('/cmd_vel', Twist, self.control_callback) rospy.Subscriber('/gazebo/model_states', ModelStates, self.state_callback) self.ground_truth_ct = 0 def scan_callback(self, msg): if self.EKF: N = len(msg.ranges) ######## ADDED ARTIFICAL NOISE ################ noise = np.random.normal(0, 0.2, N) self.scans.append((msg.header.stamp, np.array([ i * msg.angle_increment + msg.angle_min for i in range(len(msg.ranges)) ]), np.array(msg.ranges) + noise)) def control_callback(self, msg): if self.EKF: self.controls.append( (rospy.Time.now(), np.array([msg.linear.x, msg.angular.z]))) def state_callback(self, msg): self.ground_truth_ct = self.ground_truth_ct + 1 # `rostopic hz /gazebo/model_states` = 1000; let's broadcast the transform at 20Hz to reduce lag if self.ground_truth_ct % 50 == 0: self.latest_pose_time = rospy.Time.now() self.latest_pose = msg.pose[msg.name.index("turtlebot3_burger")] self.tfBroadcaster.sendTransform( create_transform_msg( (self.latest_pose.position.x, self.latest_pose.position.y, 0), (self.latest_pose.orientation.x, self.latest_pose.orientation.y, self.latest_pose.orientation.z, self.latest_pose.orientation.w), "base_footprint", "world", self.latest_pose_time)) def run(self): rate = rospy.Rate(100) while not self.latest_pose: rate.sleep() x0 = np.array([ self.latest_pose.position.x, self.latest_pose.position.y, get_yaw_from_quaternion(self.latest_pose.orientation) ]) self.EKF_time = self.latest_pose_time self.EKF = Localization_EKF(x0, NoiseParams["P0"], NoiseParams["Q"], MapParams, self.base_to_camera, NoiseParams["g"]) self.OLC = Localization_EKF(x0, NoiseParams["P0"], NoiseParams["Q"], MapParams, self.base_to_camera, NoiseParams["g"]) while True: if not self.scans: rate.sleep() continue while self.controls and self.controls[0][0] <= self.scans[0][0]: next_timestep, next_control = self.controls.popleft() if next_timestep < self.EKF_time: # guard against time weirdness (msgs out of order) continue self.EKF.transition_update( self.current_control, next_timestep.to_time() - self.EKF_time.to_time()) self.OLC.transition_update( self.current_control, next_timestep.to_time() - self.EKF_time.to_time()) self.EKF_time, self.current_control = next_timestep, next_control self.tfBroadcaster.sendTransform( create_transform_msg( (self.EKF.x[0], self.EKF.x[1], 0), tf.transformations.quaternion_from_euler( 0, 0, self.EKF.x[2]), "EKF", "world", self.EKF_time)) self.tfBroadcaster.sendTransform( create_transform_msg( (self.OLC.x[0], self.OLC.x[1], 0), tf.transformations.quaternion_from_euler( 0, 0, self.OLC.x[2]), "open_loop", "world", self.EKF_time)) scan_time, theta, rho = self.scans.popleft() if scan_time < self.EKF_time: continue self.EKF.transition_update( self.current_control, scan_time.to_time() - self.EKF_time.to_time()) self.OLC.transition_update( self.current_control, scan_time.to_time() - self.EKF_time.to_time()) self.EKF_time = scan_time alpha, r, C_AR, _, _ = ExtractLines(theta, rho, LineExtractionParams, NoiseParams["var_theta"], NoiseParams["var_rho"]) Z = np.vstack((alpha, r)) self.EKF.measurement_update(Z, C_AR) while len( self.scans ) > 1: # keep only the last element in the queue, if we're falling behind self.scans.popleft()