def test_random_forest_regressor(self, compress_model_definition): # Train model training_data = datasets.make_regression(n_features=5) regressor = RandomForestRegressor() regressor.fit(training_data[0], training_data[1]) # Serialise the models to Elasticsearch feature_names = ["f0", "f1", "f2", "f3", "f4"] model_id = "test_random_forest_regressor" es_model = MLModel.import_model( ES_TEST_CLIENT, model_id, regressor, feature_names, es_if_exists="replace", es_compress_model_definition=compress_model_definition, ) # Get some test results check_prediction_equality(es_model, regressor, random_rows(training_data[0], 20)) match = f"Trained machine learning model {model_id} already exists" with pytest.raises(ValueError, match=match): MLModel.import_model( ES_TEST_CLIENT, model_id, regressor, feature_names, es_if_exists="fail", es_compress_model_definition=compress_model_definition, ) # Clean up es_model.delete_model()
def test_predict_single_feature_vector(self): # Train model training_data = datasets.make_regression(n_features=1) regressor = XGBRegressor() regressor.fit(training_data[0], training_data[1]) # Get some test results test_data = [[0.1]] test_results = regressor.predict(np.asarray(test_data)) # Serialise the models to Elasticsearch feature_names = ["f0"] model_id = "test_xgb_regressor" es_model = MLModel.import_model(ES_TEST_CLIENT, model_id, regressor, feature_names, es_if_exists="replace") # Single feature es_results = es_model.predict(test_data[0]) np.testing.assert_almost_equal(test_results, es_results, decimal=2) # Clean up es_model.delete_model()
def test_xgb_regressor(self, compress_model_definition, objective, booster): # Train model training_data = datasets.make_regression(n_features=5) regressor = XGBRegressor(objective=objective, booster=booster) regressor.fit( training_data[0], np.exp(training_data[1] - np.max(training_data[1])) / sum(np.exp(training_data[1])), ) # Serialise the models to Elasticsearch feature_names = ["f0", "f1", "f2", "f3", "f4"] model_id = "test_xgb_regressor" es_model = MLModel.import_model( ES_TEST_CLIENT, model_id, regressor, feature_names, es_if_exists="replace", es_compress_model_definition=compress_model_definition, ) # Get some test results check_prediction_equality(es_model, regressor, random_rows(training_data[0], 20)) # Clean up es_model.delete_model()
def test_xgb_classifier_objectives_and_booster(self, objective, booster): # test both multiple and binary classification if objective.startswith("multi"): skip_if_multiclass_classifition() training_data = datasets.make_classification(n_features=5, n_classes=3, n_informative=3) classifier = XGBClassifier(booster=booster, objective=objective) else: training_data = datasets.make_classification(n_features=5) classifier = XGBClassifier(booster=booster, objective=objective) # Train model classifier.fit(training_data[0], training_data[1]) # Serialise the models to Elasticsearch feature_names = [ "feature0", "feature1", "feature2", "feature3", "feature4" ] model_id = "test_xgb_classifier" es_model = MLModel.import_model(ES_TEST_CLIENT, model_id, classifier, feature_names, es_if_exists="replace") # Get some test results check_prediction_equality(es_model, classifier, random_rows(training_data[0], 20)) # Clean up es_model.delete_model()
def test_decision_tree_classifier(self, compress_model_definition): # Train model training_data = datasets.make_classification(n_features=5) classifier = DecisionTreeClassifier() classifier.fit(training_data[0], training_data[1]) # Serialise the models to Elasticsearch feature_names = ["f0", "f1", "f2", "f3", "f4"] model_id = "test_decision_tree_classifier" es_model = MLModel.import_model( ES_TEST_CLIENT, model_id, classifier, feature_names, es_if_exists="replace", es_compress_model_definition=compress_model_definition, ) # Get some test results check_prediction_equality(es_model, classifier, random_rows(training_data[0], 20)) # Clean up es_model.delete_model()
def test_xgb_classifier(self, compress_model_definition, multi_class): # test both multiple and binary classification if multi_class: skip_if_multiclass_classifition() training_data = datasets.make_classification(n_features=5, n_classes=3, n_informative=3) classifier = XGBClassifier(booster="gbtree", objective="multi:softmax") else: training_data = datasets.make_classification(n_features=5) classifier = XGBClassifier(booster="gbtree") # Train model classifier.fit(training_data[0], training_data[1]) # Serialise the models to Elasticsearch feature_names = ["f0", "f1", "f2", "f3", "f4"] model_id = "test_xgb_classifier" es_model = MLModel.import_model( ES_TEST_CLIENT, model_id, classifier, feature_names, es_if_exists="replace", es_compress_model_definition=compress_model_definition, ) # Get some test results check_prediction_equality(es_model, classifier, random_rows(training_data[0], 20)) # Clean up es_model.delete_model()
def test_es_if_exists_fail(self, compress_model_definition): # Train model training_data = datasets.make_regression(n_features=5) regressor = RandomForestRegressor() regressor.fit(training_data[0], training_data[1]) feature_names = ["f0", "f1", "f2", "f3", "f4"] model_id = "test_random_forest_regressor" # If both overwrite and es_if_exists is given. match = f"Trained machine learning model {model_id} already exists" with pytest.raises(ValueError, match=match): MLModel.import_model( ES_TEST_CLIENT, model_id, regressor, feature_names, es_if_exists="fail", es_compress_model_definition=compress_model_definition, )
def test_imported_mlmodel_overwrite_true(self, compress_model_definition, overwrite): # Train model training_data = datasets.make_regression(n_features=5) regressor = RandomForestRegressor() regressor.fit(training_data[0], training_data[1]) feature_names = ["f0", "f1", "f2", "f3", "f4"] model_id = "test_random_forest_regressor" match = "'overwrite' parameter is deprecated, use 'es_if_exists' instead" with pytest.warns(DeprecationWarning, match=match): MLModel.import_model( ES_TEST_CLIENT, model_id, regressor, feature_names, overwrite=overwrite, es_compress_model_definition=compress_model_definition, )
def test_imported_mlmodel_bothparams(self, compress_model_definition, es_if_exists, overwrite): # Train model training_data = datasets.make_regression(n_features=5) regressor = RandomForestRegressor() regressor.fit(training_data[0], training_data[1]) feature_names = ["f0", "f1", "f2", "f3", "f4"] model_id = "test_random_forest_regressor" match = "Using 'overwrite' and 'es_if_exists' together is invalid, use only 'es_if_exists'" with pytest.raises(ValueError, match=match): MLModel.import_model( ES_TEST_CLIENT, model_id, regressor, feature_names, es_if_exists=es_if_exists, overwrite=overwrite, es_compress_model_definition=compress_model_definition, )
def test_imported_mlmodel_overwrite_false(self, compress_model_definition, overwrite): # Train model training_data = datasets.make_regression(n_features=5) regressor = RandomForestRegressor() regressor.fit(training_data[0], training_data[1]) feature_names = ["f0", "f1", "f2", "f3", "f4"] model_id = "test_random_forest_regressor" match_error = f"Trained machine learning model {model_id} already exists" match_warning = ( "'overwrite' parameter is deprecated, use 'es_if_exists' instead") with pytest.raises(ValueError, match=match_error): with pytest.warns(DeprecationWarning, match=match_warning): MLModel.import_model( ES_TEST_CLIENT, model_id, regressor, feature_names, overwrite=overwrite, es_compress_model_definition=compress_model_definition, )
def test_unpack_and_raise_errors_in_ingest_simulate(self, mocker): # Train model training_data = datasets.make_classification(n_features=5) classifier = DecisionTreeClassifier() classifier.fit(training_data[0], training_data[1]) # Serialise the models to Elasticsearch feature_names = ["f0", "f1", "f2", "f3", "f4"] model_id = "test_decision_tree_classifier" test_data = [[0.1, 0.2, 0.3, -0.5, 1.0], [1.6, 2.1, -10, 50, -1.0]] es_model = MLModel.import_model( ES_TEST_CLIENT, model_id, classifier, feature_names, es_if_exists="replace", es_compress_model_definition=True, ) # Mock the ingest.simulate API to return an error within {'docs': [...]} mock = mocker.patch.object(ES_TEST_CLIENT.ingest, "simulate") mock.return_value = { "docs": [{ "error": { "type": "x_content_parse_exception", "reason": "[1:1052] [inference_model_definition] failed to parse field [trained_model]", } }] } with pytest.raises(RuntimeError) as err: es_model.predict(test_data) assert repr(err.value) == ( 'RuntimeError("Failed to run prediction for model ID ' "'test_decision_tree_classifier'\", {'type': 'x_content_parse_exception', " "'reason': '[1:1052] [inference_model_definition] failed to parse " "field [trained_model]'})")
def test_lgbm_classifier_objectives_and_booster(self, compress_model_definition, objective, booster): # test both multiple and binary classification if objective.startswith("multi"): skip_if_multiclass_classifition() training_data = datasets.make_classification(n_features=5, n_classes=3, n_informative=3) classifier = LGBMClassifier(boosting_type=booster, objective=objective) else: training_data = datasets.make_classification(n_features=5) classifier = LGBMClassifier(boosting_type=booster, objective=objective) # Train model classifier.fit(training_data[0], training_data[1]) # Serialise the models to Elasticsearch feature_names = [ "Column_0", "Column_1", "Column_2", "Column_3", "Column_4" ] model_id = "test_lgbm_classifier" es_model = MLModel.import_model( ES_TEST_CLIENT, model_id, classifier, feature_names, es_if_exists="replace", es_compress_model_definition=compress_model_definition, ) check_prediction_equality(es_model, classifier, random_rows(training_data[0], 20)) # Clean up es_model.delete_model()
def test_lgbm_regressor(self, compress_model_definition, objective, booster): # Train model training_data = datasets.make_regression(n_features=5) if booster == "rf": regressor = LGBMRegressor( boosting_type=booster, objective=objective, bagging_fraction=0.5, bagging_freq=3, ) else: regressor = LGBMRegressor(boosting_type=booster, objective=objective) regressor.fit(training_data[0], training_data[1]) # Serialise the models to Elasticsearch feature_names = [ "Column_0", "Column_1", "Column_2", "Column_3", "Column_4" ] model_id = "test_lgbm_regressor" es_model = MLModel.import_model( ES_TEST_CLIENT, model_id, regressor, feature_names, es_if_exists="replace", es_compress_model_definition=compress_model_definition, ) # Get some test results check_prediction_equality(es_model, regressor, random_rows(training_data[0], 20)) # Clean up es_model.delete_model()