Exemple #1
0
 def _clone_function(layer):
     if type(layer) == src_embedding_class:
         logger.debug(
             "Replace {} with {}".format(
                 src_embedding_class, dst_embedding_class
             )
         )
         # ElasticDL embedding only accept a string type initializer
         if src_embedding_class == Embedding:
             init = tf.keras.initializers.get(
                 layer.embeddings_initializer
             )
         if dst_embedding_class == Embedding:
             init = tf.keras.initializers.serialize(
                 layer.embeddings_initializer
             )["class_name"]
         embedding_layer = dst_embedding_class(
             output_dim=layer.output_dim,
             input_dim=layer.input_dim,
             embeddings_initializer=init,
             mask_zero=layer.mask_zero,
             input_length=layer.input_length,
         )
         return embedding_layer
     return layer
Exemple #2
0
        def _clone_function(layer):
            if type(layer) in [tf.keras.layers.Embedding, SparseEmbedding]:
                logger.debug("Replace {} with {}".format(
                    layer.name, Embedding))
                # ElasticDL embedding only accept a string type initializer
                init = tf.keras.initializers.serialize(
                    layer.embeddings_initializer)["class_name"]

                if type(layer) == tf.keras.layers.Embedding:
                    embedding_layer = Embedding(
                        output_dim=layer.output_dim,
                        input_dim=layer.input_dim,
                        embeddings_initializer=init,
                        mask_zero=layer.mask_zero,
                        input_length=layer.input_length,
                        name=layer.name,
                    )
                else:
                    embedding_layer = Embedding(
                        output_dim=layer.output_dim,
                        input_dim=layer.input_dim,
                        embeddings_initializer=init,
                        name=layer.name,
                        combiner=layer.combiner,
                    )
                return embedding_layer
            return layer
Exemple #3
0
        def _clone_function(layer):
            if type(layer) in [
                    tf.keras.layers.Embedding,
                    SparseEmbedding,
            ] and _need_partition_embedding(layer):
                logger.debug("Replace {} with {}".format(
                    layer.name, Embedding))
                # ElasticDL embedding only accept a string type initializer
                init = tf.keras.initializers.serialize(
                    layer.embeddings_initializer)["class_name"]

                if type(layer) == tf.keras.layers.Embedding:
                    embedding_layer = Embedding(
                        output_dim=layer.output_dim,
                        input_dim=layer.input_dim,
                        embeddings_initializer=init,
                        mask_zero=layer.mask_zero,
                        input_length=layer.input_length,
                        name=layer.name,
                    )
                else:
                    embedding_layer = Embedding(
                        output_dim=layer.output_dim,
                        input_dim=layer.input_dim,
                        embeddings_initializer=init,
                        name=layer.name,
                        combiner=layer.combiner,
                    )
                embedding_layer.set_embedding_weight_name(
                    layer.trainable_weights[0].name)
                return embedding_layer
            elif type(layer) == tf.keras.layers.DenseFeatures:
                return _replace_tf_embedding_column_with_edl(layer)
            return layer
Exemple #4
0
 def _watch(self):
     while True:
         try:
             stream = watch.Watch().stream(
                 self.client.list_namespaced_pod,
                 self.namespace,
                 label_selector=ELASTICDL_JOB_KEY + "=" + self.job_name,
             )
             for event in stream:
                 self._event_cb(event)
         except Exception as e:
             logger.debug(e)
         # In case of any flaky issue causing exceptions, we wait for little
         # time and retry.
         time.sleep(5)