Exemple #1
0
    def __init__(
        self,
        function: Callable,
        configuration: Union[str, Mapping, None] = None,
        scope: Union[Scope, str] = None,
        safe: bool = True,
        db: Database = None,
        name: str = 'EMAT',
        metamodel_id=None,
    ):
        if scope is None:
            raise ValueError('must give scope')

        if name == 'EMAT':
            try:
                _name = self.function.__name__
            except:
                pass
            else:
                if _name.isalnum():
                    name = _name
                elif _name.replace("_", "").replace(" ", "").isalnum():
                    name = _name.replace("_", "").replace(" ", "")

        AbstractCoreModel.__init__(self,
                                   configuration,
                                   scope,
                                   safe,
                                   db,
                                   metamodel_id=metamodel_id)

        self.archive_path = self.config.get('archive_path', None)

        if self.archive_path is not None:
            os.makedirs(self.archive_path, exist_ok=True)

        # If no archive path is given, a temporary directory is created.
        # All archive files will be lost when this CoreDummy is deleted.
        if self.archive_path is None:
            import tempfile
            self._temp_archive = tempfile.TemporaryDirectory()
            self.archive_path = self._temp_archive.name

        WorkbenchModel.__init__(self, name, function)
 def test_determine_parameters(self):
     function = mock.Mock()
     model_a = Model("A", function)
     model_a.uncertainties = [RealParameter('a', 0, 1),
                              RealParameter('b', 0, 1),]
     function = mock.Mock()
     model_b = Model("B", function)
     model_b.uncertainties = [RealParameter('b', 0, 1),
                              RealParameter('c', 0, 1),]
     
     models = [model_a, model_b]
     
     parameters = determine_parameters(models, 'uncertainties', union=True)
     for model in models:
         for unc in model.uncertainties:
             self.assertIn(unc.name, parameters.keys())
     
     parameters = determine_parameters(models, 'uncertainties', union=False)
     self.assertIn('b', parameters.keys())
     self.assertNotIn('c', parameters.keys())
     self.assertNotIn('a', parameters.keys())    
    def test_determine_parameters(self):
        function = mock.Mock()
        model_a = Model("A", function)
        model_a.uncertainties = [
            RealParameter('a', 0, 1),
            RealParameter('b', 0, 1),
        ]
        function = mock.Mock()
        model_b = Model("B", function)
        model_b.uncertainties = [
            RealParameter('b', 0, 1),
            RealParameter('c', 0, 1),
        ]

        models = [model_a, model_b]

        parameters = determine_parameters(models, 'uncertainties', union=True)
        for model in models:
            for unc in model.uncertainties:
                self.assertIn(unc.name, parameters.keys())

        parameters = determine_parameters(models, 'uncertainties', union=False)
        self.assertIn('b', parameters.keys())
        self.assertNotIn('c', parameters.keys())
        self.assertNotIn('a', parameters.keys())
    def test_setup_working_directories(self, mock_os):

        function = mock.Mock()
        mock_msi = Model('test', function)
        msis = {mock_msi.name: mock_msi}

        mock_client = mock.create_autospec(ipyparallel.Client)
        mock_client.ids = [0, 1]  # pretend we have two engines
        mock_view = mock.create_autospec(
            ipyparallel.client.view.View)  #@ @UndefinedVariable
        mock_client.__getitem__.return_value = mock_view

        ema.setup_working_directories(mock_client, msis)
Exemple #5
0
    def test_initialize_engines(self):

        function = mock.Mock()
        mock_msi = Model('test', function)
        msis = {mock_msi.name: mock_msi}

        mock_client = mock.create_autospec(ipyparallel.Client)
        mock_client.ids = [0, 1]  # pretend we have two engines
        mock_view = mock.create_autospec(
            ipyparallel.client.view.View)  #@ @UndefinedVariable
        mock_client.__getitem__.return_value = mock_view

        cwd = '.'
        ema.initialize_engines(mock_client, msis, cwd)

        mock_view.apply_sync.assert_any_call(ema._initialize_engine, 0, msis,
                                             cwd)
        mock_view.apply_sync.assert_any_call(ema._initialize_engine, 1, msis,
                                             cwd)
    def test_copy_wds_for_msis(self, mock_os, mock_shutil):
        mock_os.path.join.return_value = '.'

        function = mock.Mock()
        mock_msi = Model('test', function)

        msis = {mock_msi.name: mock_msi}
        engine_id = 0
        engine = ema.Engine(engine_id, msis)
        engine.root_dir = '/dir_name'

        dirs_to_copy = ['/test']
        wd_by_msi = {'/test': [mock_msi.name]}
        engine.copy_wds_for_msis(dirs_to_copy, wd_by_msi)

        mock_os.path.basename.called_once_with(dirs_to_copy[0])
        mock_os.path.join.called_once_with('/dir_name', dirs_to_copy[0])
        mock_shutil.copytree.assert_called_once_with('/test', '.')
        self.assertEqual('.', mock_msi.working_directory)
Exemple #7
0
    def test_run_experiment(self):

        function = mock.Mock()
        mock_msi = Model('test', function)
        mock_runner = mock.create_autospec(experiment_runner.ExperimentRunner)

        msis = [mock_msi]
        engine_id = 0
        engine = ema.Engine(engine_id, msis, '.')
        engine.runner = mock_runner

        experiment = {'a': 1}
        engine.run_experiment(experiment)

        mock_runner.run_experiment.assert_called_once_with(experiment)

        mock_runner.run_experiment.side_effect = EMAError
        self.assertRaises(EMAError, engine.run_experiment, experiment)

        mock_runner.run_experiment.side_effect = Exception
        self.assertRaises(EMAParallelError, engine.run_experiment, experiment)
Exemple #8
0
        if entry == 'max_P':
            minimize = 1
        
        outcome = outcomes[entry]
        mean_performance = minimize * np.mean(outcome)
        std_performance = np.std(outcome)
        objs.append(float(mean_performance))
        objs.append(float(std_performance))
    
    return objs

if __name__ == '__main__':
    ema_logging.log_to_stderr(ema_logging.INFO)
    
    #instantiate the model
    model = Model('lakeproblem', function=lake_problem)
    
    #specify uncertainties
    model.uncertainties = [RealParameter("b", 0.1, 0.45),
                           RealParameter("q", 2.0, 4.5),
                           RealParameter("mean", 0.01, 0.05),
                           RealParameter("stdev", 0.001, 0.005),
                           RealParameter("delta", 0.93, 0.99)]
    #specify outcomes 
    model.outcomes = [ScalarOutcome("max_P",),
                      ScalarOutcome("utility"),
                      ScalarOutcome("inertia"),
                      ScalarOutcome("reliability")]
    
    # override some of the defaults of the model
    model.constants = [Constant('alpha', 0.41),
Exemple #9
0
            minimize = 1

        outcome = outcomes[entry]
        mean_performance = minimize * np.mean(outcome)
        std_performance = np.std(outcome)
        objs.append(float(mean_performance))
        objs.append(float(std_performance))

    return objs


if __name__ == '__main__':
    ema_logging.log_to_stderr(ema_logging.INFO)

    #instantiate the model
    model = Model('lakeproblem', function=lake_problem)

    #specify uncertainties
    model.uncertainties = [
        RealParameter("b", 0.1, 0.45),
        RealParameter("q", 2.0, 4.5),
        RealParameter("mean", 0.01, 0.05),
        RealParameter("stdev", 0.001, 0.005),
        RealParameter("delta", 0.93, 0.99)
    ]
    #specify outcomes
    model.outcomes = [
        ScalarOutcome("max_P", ),
        ScalarOutcome("utility"),
        ScalarOutcome("inertia"),
        ScalarOutcome("reliability")