def update_all_stocks_sheets(
        unsubscribe_url='Bad Developer... Always supply this.'):
    """
    Get new stock prices, alert users, and update spreadsheets.
    :param unsubscribe_url: Url that will be put in alert emails allowing users to unsubscribe.
    """

    sheet_prices_dict, sheet_alerts_dict = db.update_stock_prices(alerts=True)

    user_alerts_dict = db.get_user_alerts(sheet_alerts_dict)

    l = emails.get_emails(user_alerts_dict, unsubscribe_url)
    emails.send_emails(l)

    for ssheet_id, prices in sheet_prices_dict.items():
        credentials = db.get_credentials(ssheet_id=ssheet_id)
        h = credentials.authorize(httplib2.Http())
        # TODO(jalex): Implement using GAE's task queues (https://cloud.google.com/appengine/docs/python/taskqueue/)
        if USE_THREADS:
            t = threading.Thread(target=sheets.set_prices,
                                 args=(ssheet_id, prices, h))
            t.daemon = True
            t.start()
        else:
            sheets.set_prices(ssheet_id, prices, h)
Exemple #2
0
def vote():
    emails = get_emails()
    for item in emails:
        print(item)
        proxies = get_proxies()
        proxy_index = random.randrange(0, 5)
        proxy = proxies[proxy_index]
        print(proxy)
        full_name = item[0]
        email = item[1]
        print(full_name)
        print(email)
        proxy_config = Proxy()
        proxy_config.proxy_type = ProxyType.MANUAL
        proxy_config.http_proxy = proxy
        proxy_config.ssl_proxy = proxy
        capabilities = webdriver.DesiredCapabilities.CHROME
        proxy_config.add_to_capabilities(capabilities)
        chrome_options = Options()
        chrome_options.headless = True
        driver = webdriver.Chrome("./chromedriver",
                                  desired_capabilities=capabilities,
                                  options=chrome_options)
        driver.get("")  # FILL IN WITH WEBSITE
        time.sleep(10)  # give page time to load
        form_full_name = driver.find_element_by_xpath('')  #FILL IN WITH X PATH
        form_full_name.send_keys(full_name)
        form_radio_button = driver.find_element_by_xpath(
            '')  #FILL IN WITH X PATH
        form_radio_button.click()
        form_video_dropdown = driver.find_element_by_xpath(
            '')  #FILL IN WITH X PATH
        form_video_dropdown.click()
        form_video_choice = driver.find_element_by_xpath(
            '')  #FILL IN WITH X PATH
        form_video_choice.click()
        form_email_address = driver.find_element_by_xpath(
            '')  #FILL IN WITH X PATH
        form_email_address.send_keys(email)
        form_submit_button = driver.find_element_by_xpath(
            '')  #FILL IN WITH X PATH
        form_submit_button.click()
        time.sleep(10)  # give time to submit
        get_confirmation_text = driver.find_element_by_css_selector(
            '')  #FILL IN WITH X PATH
        if ((get_confirmation_text.text
             ) == ""):  #FILL IN WITH CONFIRMATION MESSAGE
            print("Successfully voted!")
        else:
            print("Did not vote successfully.")
        driver.quit()
        time.sleep(300)  # wait 5 mins
def compute_thresholds(out_results_dir, thresholds_dir, emails_list_file):
    if not os.path.exists(thresholds_dir):
        os.makedirs(thresholds_dir)

    emails = get_emails(emails_list_file)
    for mail in emails:
        y_score, y = get_result(mail, out_results_dir)

        th = find_threshold(y_score, y)
        th_file = os.path.join(thresholds_dir, mail + ".txt")
        print("Saving threshold:", th_file)
        with open(th_file, "w+") as f:
            f.write(str(th))
def load_and_run_all_models(config, emails_list_file, emails_data_base_dir):
    emails = get_emails(emails_list_file)
    total_err = 0.0
    for mail in emails:
        X_data, Y_data     = dataset.load_data(mail, emails_data_base_dir)
        model_path         = os.path.join(config.save_model_dir, mail, "full")
        model_object_path  = os.path.join(model_path, "model.json")
        model_weights_path = os.path.join(model_path, "weights.h5")
        threshold          = get_threshold(config.thresholds_dir, mail)

        err = load_and_run_model(config, model_object_path, model_weights_path,
                                            threshold, X_data, Y_data)
        print("Error for %s with threshold %f: %f" % (mail, threshold, err))
        total_err = (total_err + err) / 2

    print("Total error:", total_err)
def update_all_stocks_sheets(unsubscribe_url='Bad Developer... Always supply this.'):
    """
    Get new stock prices, alert users, and update spreadsheets.
    :param unsubscribe_url: Url that will be put in alert emails allowing users to unsubscribe.
    """

    sheet_prices_dict, sheet_alerts_dict = db.update_stock_prices(alerts=True)

    user_alerts_dict = db.get_user_alerts(sheet_alerts_dict)

    l = emails.get_emails(user_alerts_dict, unsubscribe_url)
    emails.send_emails(l)

    for ssheet_id, prices in sheet_prices_dict.items():
        credentials = db.get_credentials(ssheet_id=ssheet_id)
        h = credentials.authorize(httplib2.Http())
        # TODO(jalex): Implement using GAE's task queues (https://cloud.google.com/appengine/docs/python/taskqueue/)
        if USE_THREADS:
            t = threading.Thread(target=sheets.set_prices, args=(ssheet_id, prices, h))
            t.daemon = True
            t.start()
        else:
            sheets.set_prices(ssheet_id, prices, h)
Exemple #6
0
import os
import constant
import prep
import verifier
import emails

if __name__ == '__main__':

    fnames = os.listdir(constant.RAW_DIR)
    for fname in fnames:
        people = prep.rearrange_info(fname)
        for person in people.values():
            print(person)
            email_prob_list = emails.get_emails(person)
            people[person['id']]['email_list_crawl'] = email_prob_list

        print('start verify')
        verifier.verify(fname, people, False)
        print('end verify')
Exemple #7
0
import os, sys
from emails import get_emails
from sklearn.metrics import roc_curve, auc

def get_result(mail, results_dir="training/keras/models/lstm2layer2dropout/results"):
    filename = os.path.join(results_dir, mail + ".txt")
    with open(filename) as f:
        resultset = [d.split(',') for d in f.read().splitlines()]
        y_score = resultset[0]
        y = resultset[1]
        y_score = [float(x) for x in y_score]
        y = [int(x) for x in y]
        return y_score, y

if __name__ == '__main__':
    emails = get_emails()

    for mail in emails:
        if len(sys.argv) > 1:
            y_score, y = get_result(mail, sys.argv[1])
        else:
            y_score, y = get_result(mail)

        # Compute micro-average ROC curve and ROC area
        fpr, tpr, _ = roc_curve(y, y_score, pos_label=1)
        roc_auc = auc(fpr, tpr)

        ##############################################################################
        # Plot of a ROC curve for a specific class
        plt.figure()
        plt.plot(fpr, tpr, label='ROC curve (area = %0.2f)' % roc_auc)
def train_and_evaluate(config, emails_list_file, emails_data_base_dir):
    emails = get_emails(emails_list_file)
    totalFP = 0
    totalFN = 0
    totalTP = 0
    totalTN = 0
    with open(config.results_file, "w+") as f:
        f.write("")
    for mail in emails:

        print('Loading data...')
        X_data, Y_data = dataset.load_data(mail, emails_data_base_dir)

        falsePositives = 0
        falseNegatives = 0
        truePositives  = 0
        trueNegatives  = 0
        predictions = []
        shouldBe = []
        for i in range(len(X_data)):
            tmp       = X_data[i]
            X_data[i] = X_data[0]
            X_data[0] = tmp

            tmp       = Y_data[i]
            Y_data[i] = Y_data[0]
            Y_data[0] = tmp

            X_train = X_data[1:]
            y_train = Y_data[1:]
            X_test  = X_data[0:1]
            y_test  = Y_data[0:1]

            print(len(X_train), 'train sequences')

            print("Pad sequences (samples x time)")
            X_train = sequence.pad_sequences(X_train, maxlen=config.max_seq_len)
            X_test = sequence.pad_sequences(X_test, maxlen=config.max_seq_len)
            X_train, X_test = config.additional_data_transform(X_train, X_test)
            max_value = max(X_train.max(), X_test.max()) + 1
            print('X_train shape:', X_train.shape)
            print('X_test shape:', X_test.shape)

            print('Build model...')
            model = config.build_model(max_value)
            model.compile(loss=config.loss_function,
                          optimizer=config.optimizer,
                          class_mode=config.class_mode)

            print("Train...")
            model.fit(X_train, y_train, batch_size=config.batch_size, nb_epoch=config.epochs,
                      validation_data=(X_test, y_test), show_accuracy=True)
            score, acc = model.evaluate(X_test, y_test,
                                        batch_size=config.batch_size,
                                        show_accuracy=True)

            prediction = model.predict(X_test)
            predicted_class = round(abs(float(prediction)))
            print("Model prediction:", prediction, "Should be:", y_test)
            print('Test score:', score)
            print('Test accuracy:', acc)

            predictions.append(float(prediction))
            shouldBe.append(y_test[0])

            if(predicted_class == 0 and y_test[0] == 1):
                falseNegatives += 1
            elif(predicted_class == 1 and y_test[0] == 0):
                falsePositives += 1
            elif(predicted_class == 1 and y_test[0] == 1):
                truePositives += 1
            elif(predicted_class == 0 and y_test[0] == 0):
                trueNegatives += 1

            tmp       = X_data[i]
            X_data[i] = X_data[0]
            X_data[0] = tmp

            tmp       = Y_data[i]
            Y_data[i] = Y_data[0]
            Y_data[0] = tmp

            totalFP += falsePositives
            totalFN += falseNegatives
            totalTP += truePositives
            totalTN += trueNegatives

            model_path         = os.path.join(config.save_model_dir, mail, str(i))
            model_object_path  = os.path.join(model_path, "model.json")
            model_weights_path = os.path.join(model_path, "weights.h5")

            save_model(model, model_object_path, model_weights_path)

        train_on_full_data(config, mail, X_data, Y_data)

        result_string = "\n".join(["For: %s FP: %d FN: %d TP: %d TN: %d",
                                    "Predictions: %s", "Should be: %s"])
        result_string = result_string % (mail, falsePositives, falseNegatives,
                        truePositives, trueNegatives, str(predictions),
                        str(shouldBe))
        appendResults(result_string, config.results_file)
        print(result_string)


    result_string = "TotalFP: " + str(totalFP) + " TotalFN: " + str(totalFN) + \
                    " TotalTP: " + str(totalTP) + " TotalTN: " + str(totalTN)
    appendResults(result_string, config.results_file)
    print(result_string)
    gather_results.from_file(config.results_file, config.out_results_dir)
    print("Looking for FP-free threshold...")
    compute_thresholds(config.out_results_dir, config.thresholds_dir, emails_list_file)