Exemple #1
0
    def load_model(self):
        """
        Load everything we need for generating
        """
        # Image-sentence embedding
        print 'Loading image-sentence embedding...'
        vse = embedding.load_model(self.config.vsemodel)

        # VGG-19
        print 'Loading and initializing ConvNet...'

        net = self.build_convnet(self.config.vgg)

        # Captions
        print 'Loading captions...'
        cap = []
        with open(self.config.captions, 'rb') as f:
            for line in f:
                cap.append(line.strip())

        # Caption embeddings
        print 'Embedding captions...'
        cvec = embedding.encode_sentences(vse, cap, verbose=False)

        # Pack up
        z = {}
        z['vse'] = vse
        z['net'] = net
        z['cap'] = cap
        z['cvec'] = cvec

        return z
Exemple #2
0
def load_all():
    """
    Load everything we need for generating
    """
    print config.paths['decmodel']

    # Skip-thoughts
    print 'Loading skip-thoughts...'
    stv = skipthoughts.load_model(config.paths['skmodels'],
                                  config.paths['sktables'])

    # Decoder
    print 'Loading decoder...'
    dec = decoder.load_model(config.paths['decmodel'],
                             config.paths['dictionary'])

    # Image-sentence embedding
    print 'Loading image-sentence embedding...'
    vse = embedding.load_model(config.paths['vsemodel'])

    # VGG-19
    print 'Loading and initializing ConvNet...'

    if config.FLAG_CPU_MODE:
        sys.path.insert(0, config.paths['pycaffe'])
        import caffe
        caffe.set_mode_cpu()
        net = caffe.Net(config.paths['vgg_proto_caffe'],
                        config.paths['vgg_model_caffe'], caffe.TEST)
    else:
        net = build_convnet(config.paths['vgg'])

    # Captions
    print 'Loading captions...'
    cap = []
    with open(config.paths['captions'], 'rb') as f:
        for line in f:
            cap.append(line.strip())

    # Caption embeddings
    print 'Embedding captions...'
    cvec = embedding.encode_sentences(vse, cap, verbose=False)

    # Biases
    print 'Loading biases...'
    bneg = numpy.load(config.paths['negbias'])
    bpos = numpy.load(config.paths['posbias'])

    # Pack up
    z = {}
    z['stv'] = stv
    z['dec'] = dec
    z['vse'] = vse
    z['net'] = net
    z['cap'] = cap
    z['cvec'] = cvec
    z['bneg'] = bneg
    z['bpos'] = bpos

    return z
Exemple #3
0
def load_all():
    """
    Load everything we need for generating
    """
    print config.paths['decmodel']

    # Skip-thoughts
    print 'Loading skip-thoughts...'
    stv = skipthoughts.load_model(config.paths['skmodels'],
                                  config.paths['sktables'])

    # Decoder
    print 'Loading decoder...'
    dec = decoder.load_model(config.paths['decmodel'],
                             config.paths['dictionary'])

    # Image-sentence embedding
    print 'Loading image-sentence embedding...'
    vse = embedding.load_model(config.paths['vsemodel'])

    # Captions
    print 'Loading captions...'
    cap = []
    with open(config.paths['captions'], 'rb') as f:
        for line in f:
            cap.append(line.strip())

    # Caption embeddings
    print 'Embedding captions...'
    cvec = embedding.encode_sentences(vse, cap, verbose=False)

    # Biases
    print 'Loading biases...'
    bneg = numpy.load(config.paths['negbias'])
    bpos = numpy.load(config.paths['posbias'])

    # VGG Net.
    net = load_vgg()

    # Pack up
    z = {}
    z['stv'] = stv
    z['dec'] = dec
    z['vse'] = vse
    z['net'] = net
    z['cap'] = cap
    z['cvec'] = cvec
    z['bneg'] = bneg
    z['bpos'] = bpos

    return z
def load_all():
    """
    Load everything we need for generating
    """
    print path_to_decmodel

    # Skip-thoughts
    print 'Loading skip-thoughts...'
    stv = skipthoughts.load_model(path_to_skmodels, path_to_sktables)

    # Decoder
    print 'Loading decoder...'
    dec = decoder.load_model(path_to_decmodel, path_to_dictionary)

    # Image-sentence embedding
    print 'Loading image-sentence embedding...'
    vse = embedding.load_model(path_to_vsemodel)

    # VGG-19
    print 'Loading and initializing ConvNet...'
    net = build_convnet(path_to_vgg)

    # Captions
    print 'Loading captions...'
    cap = []
    with open(path_to_captions, 'rb') as f:
        for line in f:
            cap.append(line.strip())

    # Caption embeddings
    print 'Embedding captions...'
    cvec = embedding.encode_sentences(vse, cap, verbose=False)

    # Biases
    print 'Loading biases...'
    bneg = numpy.load(path_to_negbias)
    bpos = numpy.load(path_to_posbias)

    # Pack up
    z = {}
    z['stv'] = stv
    z['dec'] = dec
    z['vse'] = vse
    z['net'] = net
    z['cap'] = cap
    z['cvec'] = cvec
    z['bneg'] = bneg
    z['bpos'] = bpos

    return z
Exemple #5
0
def load_all():
    """
    Load everything we need for generating
    """
    print path_to_decmodel

    # Skip-thoughts
    print 'Loading skip-thoughts...'
    stv = skipthoughts.load_model(path_to_skmodels, path_to_sktables)

    # Decoder
    print 'Loading decoder...'
    dec = decoder.load_model(path_to_decmodel, path_to_dictionary)

    # Image-sentence embedding
    print 'Loading image-sentence embedding...'
    vse = embedding.load_model(path_to_vsemodel)

    # VGG-19
    print 'Loading and initializing ConvNet...'
    net = build_convnet(path_to_vgg)

    # Captions
    print 'Loading captions...'
    cap = []
    with open(path_to_captions, 'rb') as f:
        for line in f:
            cap.append(line.strip())

    # Caption embeddings
    print 'Embedding captions...'
    cvec = embedding.encode_sentences(vse, cap, verbose=False)

    # Biases
    print 'Loading biases...'
    bneg = numpy.load(path_to_negbias)
    bpos = numpy.load(path_to_posbias)

    # Pack up
    z = {}
    z['stv'] = stv
    z['dec'] = dec
    z['vse'] = vse
    z['net'] = net
    z['cap'] = cap
    z['cvec'] = cvec
    z['bneg'] = bneg
    z['bpos'] = bpos

    return z
def load_all(c, conn):
    """
    Load everything we need for generating
    """
    def load(field_name, create_field):
        c.execute("SELECT value FROM neural WHERE name = ?", (field_name, ))
        cache_field = c.fetchone()
        if not cache_field:
            print 'Creating field'
            field = create_field()
            c.execute("INSERT INTO neural VALUES (?, ?)",
                      (field_name, pkl.dumps(field)))
            conn.commit()
            return field
        return pkl.loads(str(cache_field[0]))

    print config.paths['decmodel']
    z = {}

    print 'Loading skip-thoughts...'
    z['stv'] = skipthoughts.load_model(config.paths['skmodels'],
                                       config.paths['sktables'])

    print 'Loading decoder...'
    z['dec'] = decoder.load_model(config.paths['decmodel'],
                                  config.paths['dictionary'])

    print 'Loading image-sentence embedding...'
    z['vse'] = embedding.load_model(config.paths['vsemodel'])

    print 'Loading and initializing ConvNet (VGG-19)...'
    z['net'] = create_covnet()

    print 'Loading captions...'
    z['cap'] = create_captions()

    print 'Embedding captions...'
    z['cvec'] = embedding.encode_sentences(z['vse'], z['cap'], verbose=False)

    print 'Loading biases...'
    z['bneg'] = numpy.load(config.paths['negbias'])
    z['bpos'] = numpy.load(config.paths['posbias'])

    return z
Exemple #7
0
def load_caption():
    # Image-sentence embedding
    print 'Loading image-sentence embedding...'
    vse = embedding.load_model(config.paths['vsemodel'])

    # Captions
    print 'Loading captions...'
    cap = []
    with open(config.paths['captions'], 'rb') as f:
        for line in f:
            cap.append(line.strip())

    # cap = cap[:100]

    # Caption embeddings
    print 'Embedding captions...'
    cvec = embedding.encode_sentences(vse, cap, verbose=False)

    return {'cap': cap, 'cvec': cvec, 'vse': vse}
Exemple #8
0
def load_all():
    """
    Load everything we need for generating
    """
    print config.paths['decmodel']

    # Skip-thoughts
    print 'Loading skip-thoughts...'
    stv = skipthoughts.load_model(config.paths['skmodels'],
                                  config.paths['sktables'])

    # Decoder
    print 'Loading decoder...'
    dec = decoder.load_model(config.paths['decmodel'],
                             config.paths['dictionary'])

    # Image-sentence embedding
    print 'Loading image-sentence embedding...'
    vse = embedding.load_model(config.paths['vsemodel'])

    # VGG-19
    print 'Loading and initializing ConvNet...'

    if config.FLAG_CPU_MODE:
        sys.path.insert(0, config.paths['pycaffe'])
        import caffe
        caffe.set_mode_cpu()
        net = caffe.Net(config.paths['vgg_proto_caffe'],
                        config.paths['vgg_model_caffe'],
                        caffe.TEST)
    else:
        net = build_convnet(config.paths['vgg'])

    # Captions
    print 'Loading captions...'
    cap = []
    with open(config.paths['captions'], 'rb') as f:
        for line in f:
            cap.append(line.strip())

    # Caption embeddings
    print 'Embedding captions...'
    cvec = embedding.encode_sentences(vse, cap, verbose=False)

    # Biases
    print 'Loading biases...'
    bneg = numpy.load(config.paths['negbias'])
    bpos = numpy.load(config.paths['posbias'])

    # Pack up
    z = {}
    z['stv'] = stv
    z['dec'] = dec
    z['vse'] = vse
    z['net'] = net
    z['cap'] = cap
    z['cvec'] = cvec
    z['bneg'] = bneg
    z['bpos'] = bpos

    return z