Exemple #1
0
    def savePredictionsStep(self):
        for i, currProb in enumerate(self.predictedProb):
            currSectionEntry = self.toPredictSections[i]
            currSection = currSectionEntry.data
            currProb = currProb

            # Insert the prediction
            mp = ecwm.Modeprediction()
            mp.trip_id = currSection.trip_id
            mp.section_id = currSectionEntry.get_id()
            mp.algorithm_id = ecwm.AlgorithmTypes.SIMPLE_RULE_ENGINE
            mp.predicted_mode_map = currProb
            mp.start_ts = currSection.start_ts
            mp.end_ts = currSection.end_ts
            self.ts.insert_data(self.user_id, "inference/prediction", mp)

            # There are now two predictions, but don't want to do a bunch of
            # refactoring, so just create the inferred # section object right here
            is_dict = copy.copy(currSectionEntry)
            del is_dict["_id"]
            is_dict["metadata"]["key"] = "analysis/inferred_section"
            is_dict["data"]["sensed_mode"] = ecwm.PredictedModeTypes[
                easf.select_inferred_mode([mp])].value
            is_dict["data"]["cleaned_section"] = currSectionEntry.get_id()
            ise = ecwe.Entry(is_dict)
            logging.debug("Updating sensed mode for section = %s to %s" %
                          (currSectionEntry.get_id(), ise.data.sensed_mode))
            self.ts.insert(ise)
        # Set last_section_done after saving because otherwise if there is an error
        # during inference, we will not save results and never re-run
        self.last_section_done = self.toPredictSections[-1]
Exemple #2
0
    def testSelectInferredModeImbalanced(self):
        # dummy_inferred_mode = dim
        dim = ecwm.Modeprediction()
        dim.trip_id = "test_trip_id"
        dim.section_id = "test_section_id"
        dim.algorithm_id = ecwm.AlgorithmTypes.SEED_RANDOM_FOREST
        dim.sensed_mode = ecwma.MotionTypes.WALKING
        dim.predicted_mode_map = {"WALKING": 0.9, "BUS": 0.1}
        dim.start_ts = 0
        dim.end_ts = 0

        self.assertEqual(fc.select_inferred_mode([dim]), 'WALKING')
Exemple #3
0
    def testSelectInferredModeEqual(self):
        # dummy_inferred_mode = dim
        # select the lower value mode, typically = lower carbon intensity mode
        dim = ecwm.Modeprediction()
        dim.trip_id = "test_trip_id"
        dim.section_id = "test_section_id"
        dim.algorithm_id = ecwm.AlgorithmTypes.SEED_RANDOM_FOREST
        dim.sensed_mode = ecwma.MotionTypes.WALKING
        dim.predicted_mode_map = {"WALKING": 0.5, "BUS": 0.5}
        dim.start_ts = 0
        dim.end_ts = 0

        self.assertEqual(fc.select_inferred_mode([dim]), 'WALKING')
Exemple #4
0
    def savePredictionsStep(self):
        from emission.core.wrapper.user import User
        from emission.core.wrapper.client import Client

        uniqueModes = self.model.classes_

        for i in range(self.predictedProb.shape[0]):
            currSectionEntry = self.toPredictSections[i]
            currSection = currSectionEntry.data
            currProb = self.convertPredictedProbToMap(uniqueModes,
                                                      self.predictedProb[i])

            # Special handling for the AIR mode
            # AIR is not a mode that is sensed from the phone, but it is inferred
            # through some heuristics in cleanAndResample instead of through the
            # decision tree. Ideally those heurstics should be replaced by the
            # inference through the decision tree, or through a separate heuristic
            # step. But we are out of time for a bigger refactor here.
            # so we say that if the sensed mode == AIR, we are going to use it
            # directly and ignore the inferred mode
            if currSection.sensed_mode == ecwma.MotionTypes.AIR_OR_HSR:
                currProb = {'AIR_OR_HSR': 1.0}

            # Insert the prediction
            mp = ecwm.Modeprediction()
            mp.trip_id = currSection.trip_id
            mp.section_id = currSectionEntry.get_id()
            mp.algorithm_id = ecwm.AlgorithmTypes.SEED_RANDOM_FOREST
            mp.predicted_mode_map = currProb
            mp.start_ts = currSection.start_ts
            mp.end_ts = currSection.end_ts
            self.ts.insert_data(self.user_id, "inference/prediction", mp)

            # Since there is currently only one prediction, create the inferred
            # section object right here
            is_dict = copy.copy(currSectionEntry)
            del is_dict["_id"]
            is_dict["metadata"]["key"] = "analysis/inferred_section"
            is_dict["data"]["sensed_mode"] = ecwm.PredictedModeTypes[
                easf.select_inferred_mode([mp])].value
            is_dict["data"]["cleaned_section"] = currSectionEntry.get_id()
            ise = ecwe.Entry(is_dict)
            logging.debug("Updating sensed mode for section = %s to %s" %
                          (currSectionEntry.get_id(), ise.data.sensed_mode))
            self.ts.insert(ise)
        # Set last_section_done after saving because otherwise if there is an error
        # during inference, we will not save results and never re-run
        self.last_section_done = self.toPredictSections[-1]