def wsabil_fixed(base_gp_data): base_gp, X, Y = base_gp_data wsabil = WSABIL(base_gp=base_gp, X=base_gp.X, Y=base_gp.Y, adapt_alpha=True) return wsabil, X, Y
bound = np.min(base_gp.Y) - 0.5 model = BoundedBayesianQuadrature(base_gp=base_gp, X=X, Y=Y, bound=bound, is_lower_bounded=True) elif METHOD == "Bounded BQ upper": bound = np.max(base_gp.Y) + 0.5 model = BoundedBayesianQuadrature(base_gp=base_gp, X=X, Y=Y, bound=bound, is_lower_bounded=False) elif METHOD == "WSABI-l adapt": model = WSABIL(base_gp=base_gp, X=base_gp.X, Y=base_gp.Y, adapt_alpha=True) elif METHOD == "WSABI-l fixed": model = WSABIL(base_gp=base_gp, X=base_gp.X, Y=base_gp.Y, adapt_alpha=False) else: raise ValueError print() print("method: {}".format(METHOD)) print("no dimensions: {}".format(D)) print()
def wsabil_adapt(base_gp_data): base_gp, X, Y = base_gp_data wsabil = WSABIL(base_gp=base_gp, X=X, Y=Y, adapt_alpha=True) return wsabil, X, Y
def wsabil_fixed(base_gp): wsabil = WSABIL(base_gp=base_gp, X=base_gp.X, Y=base_gp.Y, adapt_alpha=False) return wsabil, None
def wsabil_adapt(base_gp): wsabil = WSABIL(base_gp=base_gp, X=base_gp.X, Y=base_gp.Y, adapt_alpha=True) return wsabil, None
def get_wsabil_fixed(): base_gp, dat = get_base_gp() wsabil = WSABIL(base_gp=base_gp, X=dat.X, Y=dat.Y, adapt_alpha=False) return wsabil
def get_wsabil_adapt(): base_gp, dat = get_base_gp() return WSABIL(base_gp=base_gp, X=dat.X, Y=dat.Y, adapt_alpha=True)